

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-99/0011 of 8 April 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth Fixanchor W-FAZ and W-FAZ-IG

Torque controlled expansion anchor for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12 -17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W1, Deutschland

35 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-99/0011 issued on 4 March 2015

European Technical Assessment ETA-99/0011

Page 2 of 35 | 8 April 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z7215.16 8.06.01-555/15

European Technical Assessment ETA-99/0011

Page 3 of 35 | 8 April 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Würth Fixanchor W-FAZ and W-FAZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type W-FAZ with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type W-FAZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type W-FAZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type W-FAZ-IG B with internal thread, hexagon nut and washer B-IG, sizes M6 to M12

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for W-FAZ	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for W-FAZ	See Annex C 6
Characteristic resistance for static and quasi static action for W-FAZ-IG	See Annex C 11 to C 13
Displacements under tension and shear loads for W-FAZ	See Annex C 9 to C 10
Displacements under tension and shear loads for W-FAZ-IG	See Annex C 15

Z7215.16 8.06.01-555/15

European Technical Assessment ETA-99/0011

Page 4 of 35 | 8 April 2016

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for W-FAZ	See Annex C 7 and C 8
Resistance to fire for W-FAZ-IG	See Annex C 14

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

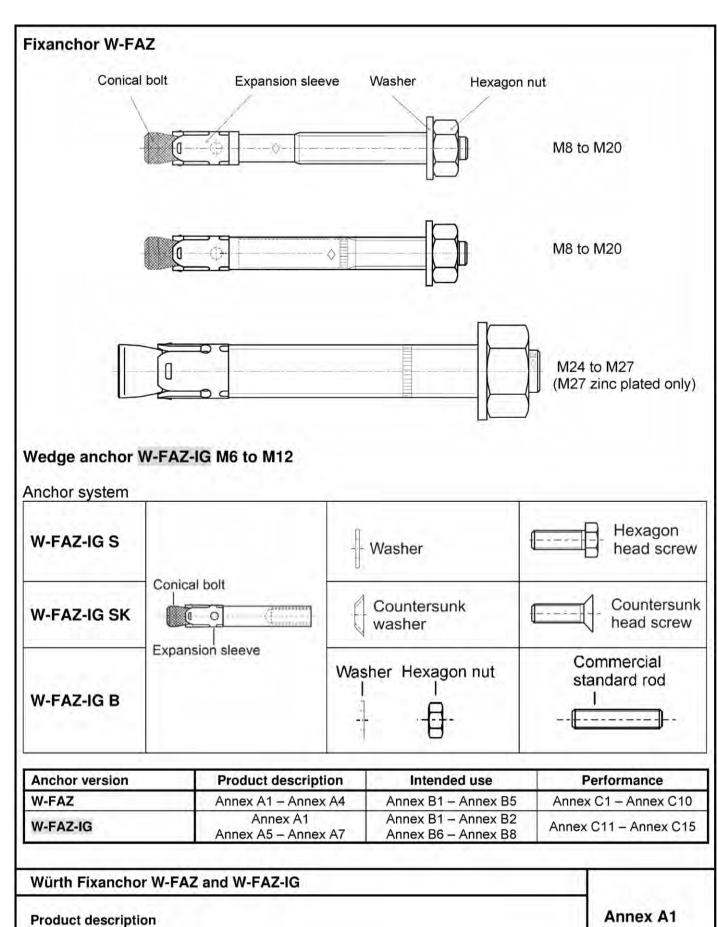
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

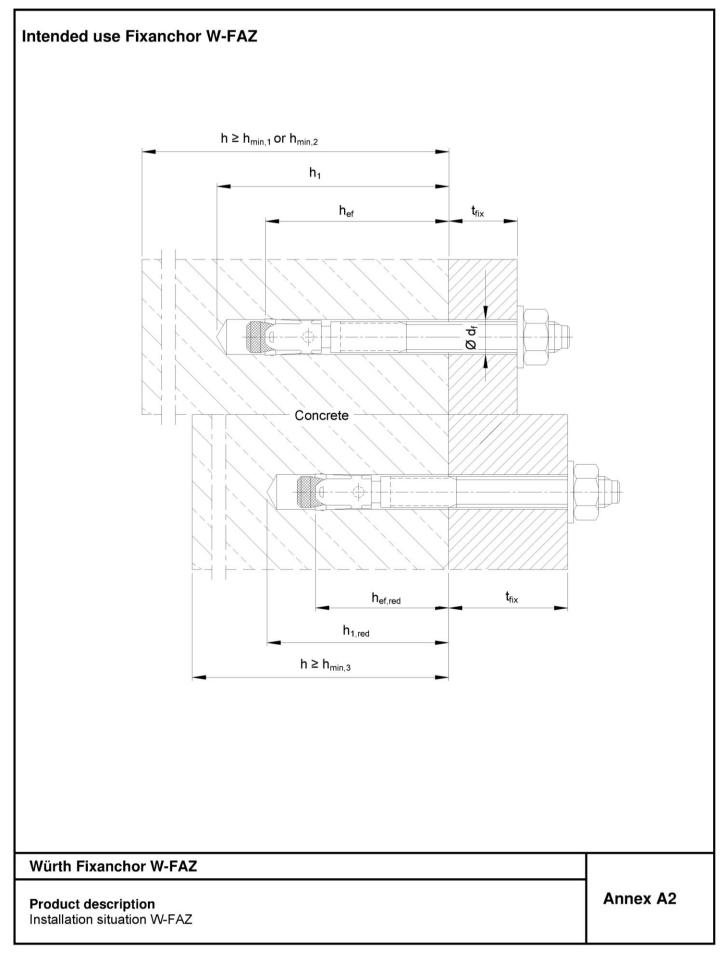
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 8 April 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentBaderschneider


Z7215.16 8.06.01-555/15

Anchor types

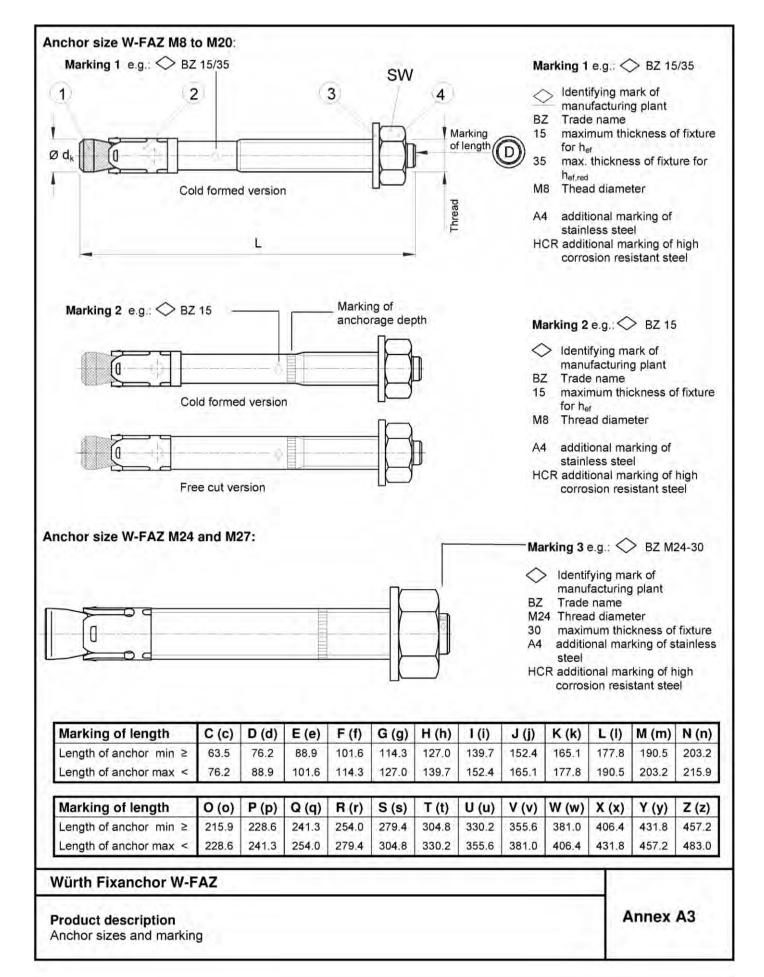


Table A1: Anchor dimensions W-FAZ

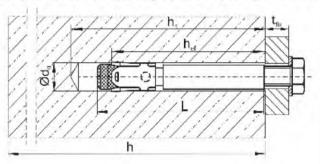
	Anchor	size		М8	M10	M12	M16	M20	M24	M27
1	Conical b	oolt	Thread	M8	M10	M12	M16	M20	M24	M27
			Ø d _k =	7.9	9.8	12.0	15.7	19.7	24	28
	Longth	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96.5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
	Length	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96.5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
	anchor	reduced anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76.5+t _{fix}	98+t _{fix}	1	-	ı
2	2 Expansion sleeve					S	ee Table A	\2		
3	3 Washer			see Table A2						
4	Hexagon	nut	SW	13	17	19	24	30	36	41

Dimensions in mm

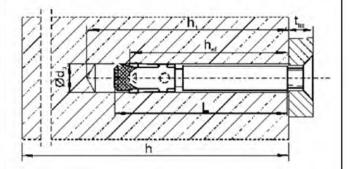
Table A2: Materials W-FAZ

		W-F	AZ/S	W-FAZ/A4	W-FAZ/HCR
No.	Part	Steel, zinc plated		Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	M8 to M20: Cold formed or machined steel, galvanised ≥ 5µm, Cone plastic coated	M10 to M20: Cold formed or machined steel, sherardized ≥ 40µm, Cone plastic coated	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, Cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, Cone plastic coated
	Threaded bolt and threaded cone	M24 and M27: Steel, galvanised		M24: Stainless steel (e.g. 1.4401, 1.4404) EN 10088:2014	M24: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014
2	Expansion sleeve	M8 to M20: Steel acc. to EN 10088:2014, material No. 1.4301 or 1.4401 M24 and M27: Steel acc. to EN 10139:1997	M10 to M20: Steel acc. to EN 10088:2014, material No. 1.4301 or 1.4401	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014
3	Washer	Steel, galvanised	Steel, mechanically galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014
4	Hexagon nut	Steel, galvanised, coated	Steel, hot dip galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated

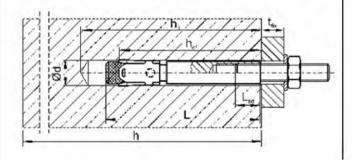
Würth Fixanchor W-FAZ	
Product description Dimensions and materials	Annex A4



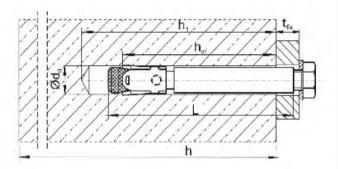
Intended use Wedge anchor W-FAZ-IG

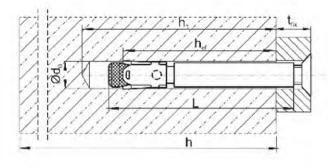

Installation type V pre-setting installation

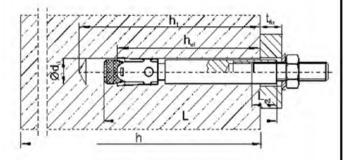
pre-set anchor body, the fixture bears on the screw or thread rod only


W-FAZ-IG S consisting of W-FAZ-IG and S-IG

W-FAZ-IG SK consisting of W-FAZ-IG and SK-IG




W-FAZ-IG B consisting of W-FAZ-IG and MU-IG



Installation type D through-setting installation

the anchor is set through the fixture, the fixture bears on the conical bolt W-FAZ-IG

Würth Fixanchor W-FAZ-IG

Product description Installation situation W-FAZ-IG Annex A5

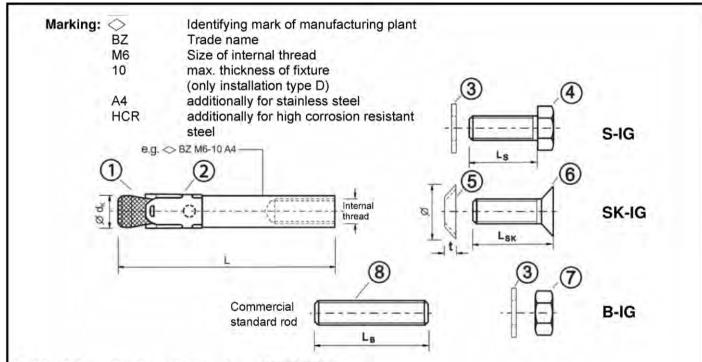


Table A3: Anchor dimensions W-FAZ-IG

No.	Anchor size			M6	M8	M10	M12
la.	Conical bolt with Internal thread	6	d _k	7.9	9.8	11.8	15.7
1	Installation type V		L	50	62	70	86
	Installation type D		L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve				see ta	ible A4	
3	Washer				see ta	ble A4	
Ļī	Hexagon head screw	width ad		10	13	17	19
4	Installation type V		Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
Installation type D			Ls	14 to 20	18 to 22	20 to 22	25 to 28
5	5 Countersunk Ø counters		sunk	17.3	21.5	25.9	30.9
3			t	3,9	5.0	5.7	6.7
6	Countersunk head screw	bit	size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socke 8 mm
	Installation type V		-sĸ	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Installation type D		-sk	16 to 20	20 to 25	25	30
7	Hexagon nut w	idth across	flats	10	13	17	19
0	Commercial t	ype V L	B≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
8	standard rod1) t	ype D L	B≥	21	28	34	41

¹⁾ acc. to specifications (Table A4)

Dimensions in mm

Würth Fixanchor W-FAZ-IG	
Product description	Annex A6
Anchor parts, marking and dimensions	

Table A4: Materials W-FAZ-IG

		W-FAZ-IG/S	W-FAZ-IG/A4	W-FAZ-IG/HCR
No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999 Stainless steel A4		High corrosion resistant steel HCR
1	Conical bolt W-FAZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated
2	Expansion sleeve W-FAZ-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014
3	Washer S-IG / B-IG	Steel, galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014
4	Hexagon head screw S-IG	Steel, galvanised, coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
7	Hexagon nut B-IG	Steel, galvanised coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009

Würth Fixanchor W-FAZ-IG	
Product description Materials	Annex A7

Specifications of intended use

Fixanchor W-FAZ							
Standard anchorage depth	M8	M10	M12	M16	M20	M24	M27
Steel, galvanised				1			
Steel, sherardized	- 1			/			9
Stainless steel A4 and high corrosion resistant steel HCR		✓					4
Static or quasi-static action	- 12			V			
Fire exposure				V			
Seismic action (C1 and C2) 1)			/			- h-c	

Reduced anchorage depth 1)	M8	M10	M12	M16		
Steel, galvanised	V					
Steel, sherardized	- /					
Stainless steel A4 and high corrosion resistant steel HCR	1					
Static or quasi-static action	✓					
Fire exposure	V					
Seismic action (C1 and C2)			-			

¹⁾ only cold formed anchors acc. to Annex A3

Fixanchor W-FAZ-IG	M6	M8	M10	M12	
Steel zinc plated		-	/		
Stainless steel A4 and high corrosion resistant steel HCR	✓				
Static or quasi-static action	√				
Fire exposure	✓ ·				
Seismic action (C1 and C2)		4	-		

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2013
- Strength classes C20/25 to C50/60 according to EN 206-1:2013
- · Cracked or non-cracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

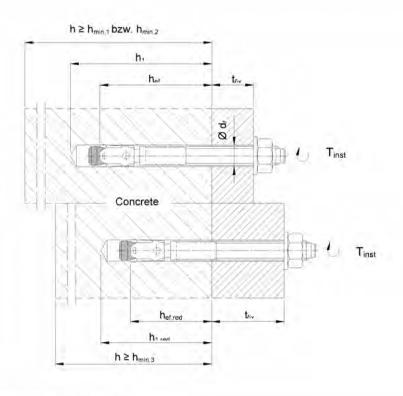
Würth Fixanchor W-FAZ and W-FAZ-IG	
Intended use Specifications	Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4: 2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

Würth Fixanchor W-FAZ and W-FAZ-IG	
Intended use Specifications	Annex B2

Table B1: Installation parameters, W-FAZ

Anchor size				M8	M10	M12	M16	M20	M24	M27
Nominal drill	hole diameter	do	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	d _{cut} ≤	[mm]	8.45	10.45	12.5	16.5	20.55	24.55	28,55
	Steel, galvanised	T _{inst}	[Nm]	20	25	45	90	160	200	300
Installation	Steel, sherardized	Tinst	[Nm]	-	22	40	90	160	1,4,7	-
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
Diameter of o	27727777	$d_f \! \leq \!$	[mm]	9	12	14	18	22	26	30
Standard an	chorage depth								3	
Depth of	Steel, zinc plated	h₁ ≥	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	h₁ ≥	[mm]	60	75	90	110	125	155	La
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	10 <u>-</u> 01
Reduced an	chorage depth									
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90	1.5		
Reduced effe depth	ective anchorage	h _{ef,red}	[mm]	35	40	50	65		-	

Würth Fixanchor W-FAZ Intended use Installation parameters Annex B3

Table B2:	Minimum spacings and	edge distances,	standard anchorage depth	i, W-FAZ
-----------	----------------------	-----------------	--------------------------	----------

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard thickness of concret	e membe	Na -							
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete				,					
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
	for c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	180
	for s ≥	[mm]	80	90	140	180	200	220	540
Non-cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	forc≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130	100	180
117	for s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min, 1}	[mm]	100	120	140	160	200	250	The state of
Cracked concrete									
Minimum spacing	Smin	[mm]	40	50	60	60	95	125	
	for c ≥	[mm]	70	75	100	100	150	125	
Minimum edge distance	C _{min}	[mm]	40	55	60	60	95	125	1 3
	for s ≥	[mm]	80	90	140	180	200	125	
Non-cracked concrete									
Minimum spacing	Smin	[mm]	40	50	60	65	90	125	
	for c ≥	[mm]	80	75	120	120	180	125	135
Minimum edge distance	Cmin	[mm]	50	60	75	80	130	125	
	for s ≥	[mm]	100	120	150	150	240	125	
Minimum thickness of concret	e membe	t							
Steel zinc plated, stainless ste	el A4, HC	R							
Minimum thickness of member	h _{min.2}	[mm]	80	100	120	140			3-
Cracked concrete	77774								
Minimum spacing	Smin	[mm]	40	45	60	70			
100000000000000000000000000000000000000	for c ≥	[mm]	70	90	100	160			
Minimum edge distance	C _{min}	[mm]	40	50	60	80	-		
	for s ≥	[mm]	80	115	140	180			
Non-cracked concrete									
Minimum spacing	Smin	[mm]	40	60	60	80			
	for c ≥	[mm]	80	140	120	180			
Minimum edge distance	C _{min}	[mm]	50	90	75	90	-	-	35
ter name de la terrant d	for s ≥	[mm]	100	140	150	200			

Fire exposure from one side)		
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature
Fire exposure from more that	an one side		
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature
Minimum edge distance	C _{min,fi}	[mm]	≥ 300 mm

Intermediate values by linear interpolation.

Würth Fixanchor W-FAZ

Intended use

Minimum spacings and edge distances for standard anchorage depth

Table B3: Minimum spacings and edge distances, reduced anchorage depth, W-FAZ

Anchor size			M8	M10	M12	M16	
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140	
Cracked concrete							
Minimum spacing	Smin	[mm]	50	50	50	65	
All Illiant Spacing	for c ≥	[mm]	60	100	160	170	
NASS-bassian and an additional and	C _{min}	[mm]	40	65	65	100	
Minimum edge distance	for s ≥	[mm]	185	180	250	250	
Non-cracked concrete							
Minimum spacing	S _{min}	[mm]	50	50 50 50			
winimum spacing	for c≥	[mm]	60	100	160	170	
Minimum adas distants	C _{min}	[mm]	40	65	100	170	
Minimum edge distance	for s ≥	[mm]	185	180	185	65	
Fire exposure from one side							
Minimum spacing	S _{min,fi}	[mm]	S	ee normal amb	ient temperatu	ire	
Minimum edge distance	C _{min,fi}	[mm]	S	ee normal amb	ient temperatu	ire	
Fire exposure from more than one sid	е						
Minimum spacing	S _{min,fi}	[mm]	S	ee normal amb	ient temperatu	ire	
Minimum edge distance	C _{min,fi}	[mm]		≥ 300	0 mm		

Intermediate values by linear interpolation.

Würth Fixanchor W-FAZ

Intended use

Minimum spacings and edge distances for reduced anchorage depth

Installation instructions W-FAZ Drill hole perpendicular to concrete surface. Blow out dust. 2 Alternatively vacuum clean down to the bottom of the 3 Check position of nut. Drive in anchor, such that h_{ef} or $h_{\text{ef,red}}$ depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A3. TINST Max. tightening torque Tinst shall be applied 5 by using calibrated torque wrench.

Würth Fixanchor W-FAZ

Intended Use Installation instructions

Table B4: Installation parameters W-FAZ-IG

Anchor size	M6	M8	M10	M12			
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Drill hole diameter		do	[mm]	8	10	12	16
Cutting diameter of drill bit		d _{cut} ≤	[mm]	8.45	10.45	12.5	16.5
Depth of drill hole		h₁≥	[mm]	60	75	90	105
Screwing depth of threaded rod		L _{sd} ²⁾ ≥	[mm]	9	12	15	18
introduction continues.		S	[Nm]	10	30	30	55
Installation moment, steel zinc plated	Tinst	SK	[Nm]	10	25	40	50
		В	[Nm]	8	25	30	45
Installation moment,		S	[Nm]	15	40	50	100
	Tinst	SK	[Nm]	12	25	45	60
stainless steel A4, HCR		В	[Nm]	8	25	40	80
Installation type V (Pre-setting in	stallation)						
Diameter of clearance hole in the fi	ixture	d _f ≤	[mm]	7	9	12	14
		S	[mm]	1	111	1	_1_
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D (Through-sett	ing installa	ation)					
Diameter of clearance hole in the fi		d _f ≤	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
	267	В	[mm]	5	7	8	9

The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm.

Table B5: Minimum spacings and edge distances W-FAZ-IG

Anchor size		M6	M8	M10	M12	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	Smin	[mm]	50	60	70	80
	for c ≥	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
	for s ≥	[mm]	75	100	100	120
Non-cracked concrete				v		
Minimum spacing	Smin	[mm]	50	60	65	80
	for c ≥	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	for s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	110
Minimum edge distance	C _{min,fi}	[mm]		See normal	temperature	1.
Fire exposure from more than one side						
Minimum spacing	Smin,fi	[mm]		See normal	temperature	
Minimum edge distance	C _{min,fi}	[mm]		≥ 30	0 mm	

Würth Fixanchor W-FAZ-IG

Intended use

Installation parameters, minimum spacings and edge distances

²⁾ see Annex A5

Installation instructions W-FAZ-IG Pre-setting installation Drill hole perpendicular to concrete surface. Blow out dust. 2 Alternatively vacuum clean down to the bottom of the hole. Setting tool for pre-setting installation 3 insert in anchor. Drive in anchor with setting tool. 5 Drive in srew. Tiest Max. tightening torque T_{inst} may be applied by using calibrated torque wrench. Würth Fixanchor W-FAZ-IG Annex B8 Intended Use Installation instructions for pre-setting installation

Through-setting installation Drill hole perpendicular to concrete surface.

Blow out dust.
Alternatively vacuum clean down to the bottom of the hole.

Setting tool for through-setting installation insert in anchor.

Drive in anchor with setting tool.

Drive in screw.

Max. tightening torque T_{inst} may be applied by using calibrated torque wrench.

Würth Fixanchor W-FAZ-IG	
Intended Use Installation instructions for through-setting installation	Annex B9

Table C1: Characteristic values for tension loads, W-FAZ zinc plated, cracked concrete, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ2 = Yinst	[-]				1,0			
Steel failure									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1.	53	1	.5	1.6	1	.5
Pull-out									
Standard anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	(1):	1)
Reduced anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	7.5	1)	1)	-		
Increasing factor for N _{Rk,p}	ψс	[-]	1			$\left(\frac{f_{ck,cube}}{25}\right)^{0}$.5		
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-1		-
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]				7.2			

¹⁾ Pull-out is not decisive.

Würth Fixanchor W-FAZ

Performance

Characteristic values for tension loads, W-FAZ zinc plated, cracked concrete, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C2: Characteristic values for tension loads, W-FAZ A4 / HCR, cracked concrete, static and quasi-static action

Anchor size		М8	M10	M12	M16	M20	M24
Installation safety factor $\gamma_2 = \gamma_{inst}$	[-]				1.0		
Steel failure							
Characteristic tension resistance N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial safety factor γ _{Ms}	[-]		1	.5	5 4 11	1.68	1.5
Pull-out							
Standard anchorage depth							
Characteristic resistance in concrete C20/25	[kN]	5	9	16	25	1)	40
Reduced anchorage depth							
Characteristic resistance in concrete C20/25 N _{Rk,p}	[kN]	5	7.5	1)	1)	-	
Increasing factor for N _{Rk,p} ψc	[-]			$\left(\frac{f_{ck,ck}}{2!}\right)$			
Concrete cone failure							
Effective anchorage depth h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth h _{ef,red}	[mm]	35 ²⁾	40	50	65	0.0	-
Factor according to CEN/TS 1992-4 k _{cr}	[-]			7	7.2		

¹⁾ Pull-out is not decisive.

Würth Fixanchor W-FAZ

Performance

Characteristic values for tension loads, W-FAZ A4 / HCR, cracked concrete, static and quasi-static action

Use restricted to anchoring of structural components statically indeterminate.

Table C3: Characteristic values for tension loads, W-FAZ zinc plated, non-cracked concrete, static and quasi-static action

Anchor size		M8	M10	M12	M16	M20	M24	M27
Installation safety factor $\gamma_2 =$	γ _{inst} [-]				1.0			
Steel failure	B ALL ALL							
Characteristic tension resistance N	Rk,s [kN]	16	27	40	60	86	126	196
	γ _{Ms} [-]	1.	.53	1	.5	1.6	1	.5
Pull-out								
Standard anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	Rk,p [kN]	12	16	25	35	1)	.1)	1)
Reduced anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	Rk,p [kN]	7.5	9	1)	1)	-	5	я
Splitting For the proof against splitting failure Standard anchorage depth Splitting for standard thickness of concr the values scr.sp and ccr.sp may be linearly interport	ete membe	er (The hi	gher resista	ance of cas	e 1 and ca	se 2 may be	e applied;	
	,,1≥ [mm]	100	120	140	170	200	230	250
Case 1								
Characteristic resistance in non-cracked concrete C20/25	Rk,sp [kN]	9	12	20	30	40	62,3	50
Spacing (edge distance) $s_{cr,sp}$ (= 2 c_c	er,sp) [mm]				3 h _{ef}			
Case 2								,
Characteristic resistance in non-cracked concrete C20/25	Rk,sp [kN]	12	16	25	35	50.5	62.3	70.6
Spacing (edge distance) s _{cr,sp} (= 2 c _c	r,sp) [mm]		4	h _{ef}		4.4 h _{ef}	3 h _{ef}	5 h _e
Splitting for minimum thickness of conc	rete memb	er						
Minimum thickness of concrete h _{mir}	_{1,2} ≥ [mm]	80	100	120	140			
Characteristic resistance in non-cracked concrete C20/25	Rk,sp [kN]	12	16	25	35	-8	-	5
Spacing (edge distance) $s_{cr,sp}$ (= 2 c	cr,sp) [mm]		5	h _{ef}			-	
Reduced anchorage depth					,	1 1		
	_{1,3} ≥ [mm]	80	80	100	140			
The state of the s	Rk,sp [kN]	7.5	9	17.9	26.5	3	5	-
Spacing (edge distance) $s_{cr,sp}$ (= 2 c_c	or,sp) [mm]	200	200	250	300			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψc [-]				$\left(\frac{f_{ck,cube}}{25}\right)^0$,5		
Concrete cone failure								
Effective anchorage depth	h _{ef} [mm]	46	60	70	85	100	115	125
Reduced anchorage depth h	ef,red [mm]	35 ²⁾	40	50	65		8	-
	k _{ucr} [-]				10.1			

¹⁾ Pull-out is not decisive.

Würth Fixanchor W-FAZ

Performance

Characteristic values for **tension loads**, W-FAZ **zinc plated**, **non-cracked concrete**, static and quasi-static action

Use restricted to anchoring of structural components statically indeterminate.

Table C4: Characteristic values for tension loads, W-FAZ A4 / HCR, non-cracked concrete, static and quasi-static action

Anchor size		- 1	M8	M10	M12	M16	M20	M24
Installation safety factor	Y2 = Yinst	[-]			1	.0		
Steel failure								
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial safety factor	Ϋ́Ms	[-]		1	5		1.68	1.5
Pull-out								
Standard anchorage depth								2
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	10
Reduced anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	7.5	9	1)	1)	19	4
Splitting For the proof against splitting	g failure N ⁰ _{Rk.c} ha	as to be re	eplaced by	N ⁰ _{Rk.sp} with	considerati	on of the me	ember thick	ness
Standard anchorage depth								
Splitting for standard thickness of the values s _{cr.sp} and c _{cr.sp} may be linearl								d)
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1								
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	i i
Spacing (edge distance)	$s_{cr,sp} (= 2 c_{cr,sp})$	[mm]			3	h _{ef}		
Case 2								
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50.5	70.6
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	230	250	280	400	440	500
Splitting for minimum thickness o	f concrete me	mber						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	1,2	-
Spacing (edge distance)	$s_{cr,sp} (= 2 c_{cr,sp})$	[mm]		5	h _{ef}			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in non-cracked concrete C20/25	$N^{o}_{Rk,sp}$	[kN]	7.5	9	17.9	26.5	(-	
Spacing (edge distance)	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	200	200	250	300		,
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]			$\left(\frac{f_{ck,cu}}{25}\right)$	be)0,5		
Concrete cone failure								<u> </u>
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	14	100
Factor according to CEN/TS 1992-		[-]			10).1		

Pull-out is not decisive.

Würth Fixanchor W-FAZ

Performance

Characteristic values for tension loads, W-FAZ A4 / HCR, non-cracked concrete, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C5: Characteristic values for shear loads, W-FAZ, cracked and non-cracked concrete, static or quasi static action

Anchor size				М8	M10	M12	M16	M20	M24	M27	
Installation safety fa	ctor	$\gamma_2 = \gamma_{inst}$	[-]				1.0				
Steel failure withou	ut lever arm, Steel	zinc pla	ated								
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	12.2	20.1	30	55	69	114	169.4	
Factor for ductility		k_2	[-]	1.0							
Partial safety factor		γ_{Ms}	[-]		1.	25		1.33	1.25	1.25	
Steel failure withou	ut lever arm, Stain	less ste	el A4, ł	HCR							
Characteristic shear	resistance	$V_{Rk,s}$	[kN]	13	20	30	55	86	123.6		
Factor for ductility		k_2	[-]				1.0			_	
Partial safety factor γ _{Ms}		γ_{Ms}	[-]		1,	25		1.4	1.25		
Steel failure with le	ever arm, Steel zin	c plated	ı								
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331.5	
Partial safety factor		γMs	[-]	1.25 1.33 1.25		1.25	1.25				
Steel failure with le	ever arm, Stainles:	s steel A	4, HCF	₹							
Characteristic bendi	ng resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	200	454	785.4		
Partial safety factor		γ_{Ms}	[-]		1.	25		1.4	1.25	_	
Concrete pry-out fa	ailure										
Factor k acc. to ETA or k ₃ acc. to CEN/TS		k ₍₃₎	[-]		2.	4			2.8		
Concrete edge fail	ure										
Effective length of anchor in shear	Steel zinc plated	I _f	[mm]	46	60	70	85	100	115	125	
loading with h ef	Stainless steel A4, HCR	I _f	[mm]	46	60	70	85	100	125	-	
Effective length of	Steel zinc plated	$I_{\rm f,red}$	[mm]	35 ¹⁾	40	50	65				
and with h	Stainless steel A4, HCR	$I_{\rm f,red}$	[mm]	35 ¹⁾	40	50	65	-	-	_	
Outside diameter of	anchor	d_{nom}	[mm]	8	10	12	16	20	24	27	

¹⁾ Use restricted to anchoring of structural components statically indeterminate.

Würth Fixanchor W-FAZ Performance Characteristic values for shear loads, W-FAZ, cracked and non-cracked concrete, static or quasi static action

Table C6: Characteristic resistance for seismic loading, W-FAZ, standard anchorage depth, performance category C1 and C2

Anchor size			M8	M10	M12	M16	M20	
Tension loads								
Installation safety factor	Y2 = Yinst	[-]			1.0			
Steel failure, Steel zinc plate	ed							
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	16	27	40	60	86	
Characteristic resistance C2	N _{Rk,s,seis,C2}	[kN]	16	27	40	60	86	
Partial safety factor	γMs,seis	[-]	1.	.53	1	.5	1.6	
Steel failure, Stainless steel	A4, HCR	W.						
Characteristic resistance C1	N _{Rk,s,seis,C1}	[kN]	16	27	40	64	108	
Characteristic resistance C2	N _{Rk,s,seis,C2}	[kN]	16	27	40	64	108	
Partial safety factor γ _{Ms,seis}			1.5					
Pull-out (steel zinc plated, sta	ainless steel	A4 and	HCR)					
Characteristic resistance C1	N _{Rk,p,seis,C1}	[kN]	5	9	16	25	36	
Characteristic resistance C2	N _{Rk,p,seis,C2}	[kN]	2.3	3.6	10.2	13.8	24.4	
Increasing factor for N _{Rk,p}	ψс	[-]			1.0			
Shear loads								
Steel failure without lever a	rm, Steel zi	nc plate	d					
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	9.3	20	27	44	69	
Characteristic resistance C2	V _{Rk,s,seis,C2}	[kN]	6.7	14	16.2	35.7	55.2	
Partial safety factor	γMs,seis	[-]		1.	25		1.33	
Steel failure without lever a	rm, Stainles	s steel	A4, HCR					
Characteristic resistance C1	V _{Rk,s,seis,C1}	[kN]	9.3	20	27	44	69	
Characteristic resistance C2	V _{Rk,s,seis,C2}	[kN]	6.7	14	16.2	35.7	55.2	
Partial safety factor	YMs,seis	[-]		1.	25		1.4	

Performance

Characteristic resistance for **seismic loading**, W-FAZ, **standard anchorage depth**, performance category **C1** and **C2**

Table C7: Characteristic values for tension and shear load under fire exposure, W-FAZ, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Anchor size				M8	M10	M12	M16	M20	M24	M27
Tension load										
Steel failure										
Steel, galvanise	ed									
	R30			1.5	2.6	4.1	7.7	9.4	13.6	17.6
Characteristic	R60	N	n.Nn	1.1	1.9	3.0	5.6	8.2	11.8	15.3
resistance	R90	N _{Rk,s,fi}	[kN]	0.8	1.4	2.4	4.4	6.9	10.0	13.0
	R120			0.7	1.2	2.2	4.0	6.3	9.1	11.8
Stainless steel	A4, HCR									
	R30	1		3.8	6.9	12.7	23.7	33.5	48.2	
Characteristic	R60		DAI .	2.9	5.3	9.4	17.6	25.0	35.9	
resistance	R90	N _{Rk,s,fi}	[kN]	2.0	3.6	6.1	11.5	16.4	23.6	
	R120			1.6	2.8	4.5	8.4	12.1	17.4	
Shear load			· ·							
Steel failure wit	thout lever a	rm								
Steel, galvanise	ed									
	R30			1.6	2.6	4.1	7.7	11	16	20.6
Characteristic	R60			1.5	2.5	3.6	6.8	11	15	19.8
resistance	R90	V _{Rk,s,fi}	[kN]	1.2	2.1	3.5	6.5	10	15	19.0
	R120			1.0	2.0	3.4	6.4	10	14	18.6
Stainless steel	A4, HCR									
	R30			3.8	6.9	12.7	23.7	33.5	48.2	
Characteristic	R60			2.9	5.3	9.4	17.6	25.0	35.9	
resistance	R90	$V_{Rk,s,fi}$	[kN]	2.0	3.6	6.1	11.5	16.4	23.6	+
	R120	-		1.6	2.8	4.5	8.4	12.1	17.4	
Steel failure wit	th lever arm									
Steel, galvanise	ed									
	R30			1.7	3.3	6.4	16.3	29	50	75
Characteristic	R60			1.6	3.2	5.6	14	28	48	72
resistance	R90	M Rk,s,fi	[Nm]	1.2	2.7	5.4	14	27	47	69
	R120			1.1	2.5	5.3	13	26	46	68
Stainless steel										
	R30			3.8	9.0	19.7	50.1	88.8	153.5	
Characteristic	R60			2.9	6.8	14.6	37.2	66.1	114.3	
resistance	R90	M ⁰ Rk,s,fi	[Nm]	2.1	4.7	9.5	24.2	43.4	75.1	-
	R120			1.6	3.6	7.0	17.8	32.1	55.5	

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pull-out is not decisive in Eq. 2.4 and Eq. 2.5, TR 020 $N_{Rk,p}$ must be replaced by $N^0_{Rk,c}$.

Würth Fixanchor W-FAZ

Performance

Characteristic values for tension and shear load under fire exposure, W-FAZ, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Table C8: Characteristic values for tension and shear load under fire exposure, W-FAZ, reduced anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Anchor size				M8	M10	M12	M16
Tension load							
Steel failure							
Steel, galvanised							
	R30			1,5	2.6	4.1	7.7
Characteristic	R60	N.	FIGNIT	1,1	1.9	3.0	5.6
resistance	R90	- N _{Rk,s,fi}	[kN]	0.8	1.3	1.9	3.5
	R120			0.6	1.0	1.3	2.5
Stainless steel A4,	HCR						
R30				3.2	6.9	12.7	23.7
Characteristic	R60		n.xa	2.5	5,3	9.4	17.6
resistance	R90	- N _{Rk,s,fi}	[kN]	1.9	3.6	6.1	11.5
	R120			1.6	2.8	4.5	8.4
Shear load							
Steel failure withou	ut lever arm						
Steel, galvanised							
	R30			1.5	2.6	4.1	7.7
Characteristic R60 R90 R120	R60		n.Nr.	1.1	1.9	3.0	5.6
	R90	− V _{Rk,s,fi}	[kN]	8,0	1.3	1.9	3.5
			0.6	1.0	1.3	2.5	
Stainless steel A4,	HCR						
	R30			3.2	6.9	12.7	23.7
Characteristic	R60		TLANT	2.5	5.3	9.4	17.6
resistance	R90	− V _{Rk,s,fi}	[kN]	1.9	3,6	6.1	11.5
	R120			1.6	2.8	4.5	8.4
Steel failure with le	ever arm						
Steel, galvanised							
	R30			1.5	3.3	6.4	16.3
Characteristic	R60		711	1.2	2.5	4.7	11.9
resistance	R90	− M ⁰ _{Rk,s,fi}	[Nm]	0.8	1.7	3.0	7.5
	R120			0.6	1.2	2.1	5.3
Stainless steel A4,	HCR						
	R30			3.2	8.9	19.7	50.1
Characteristic	R60	140	INIcal	2.6	6.8	14.6	37.2
resistance	R90	− M ^o _{Rk,s,fi}	[Nm]	2.0	4.7	9.5	24.2
	R120			1.6	3.6	7.0	17.8

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pull-out is not decisive in Eq. 2.4 and Eq. 2.5, TR 020 $N_{Rk,p}$ must be replaced by $N^0_{Rk,c}$.

Würth Fixanchor W-FAZ

Performance

Characteristic values for tension and shear load under fire exposure, W-FAZ, reduced anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Table C9:	Displacements	under tension	load, W-FAZ

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2.4	4.3	7.6	11.9	17.1	21.1	24
Displacement	δ_{N0}	[mm]	0.6	1.0	0.4	1.0	0.9	0.7	0.9
	$\delta_{N\infty}$	[mm]	1.4	1.2	1.4	1.3	1.0	1.2	1.4
Tension load in non-cracked concrete N		[kN]	5.7	7.6	11.9	16.7	23.8	29.6	34
Displacement	δ_{N0}	[mm]	0.4	0.5	0.7	0.3	0.4	0.5	0.3
	$\delta_{N\infty}$	[mm]	0	.8	1.4		0.8		1.4
Displacements under seismic tension le	oads C2								
Displacements for DLS	δ _{N,seis,C2(DLS)}	[mm]	2.3	4.1	4.9	3.6	5.1		
Displacements for ULS	δ _{N,seis,C2(ULS)}	[mm]	8.2	13.8	15.7	9.5	15.2		. (*)
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2.4	4.3	7.6	11.9	17.1	19.0	
Displacement	δησ	[mm]	0.7	1.8	0.4	0.7	0.9	0.5	-
	δ _{N∞}	[mm]	1.2	1.4	1.4	1.4	1.0	1.8	
Tension load in non-cracked concrete	N	[kN]	5.8	7.6	11.9	16.7	23.8	33.5	
Displacement	δ_{N0}	[mm]	0.6	0.5	0.7	0.2	0.4	0.5	140
	$\delta_{N\infty}$	[mm]	1.2	1.0	1.4	0.4	0.8	1.1	
Displacements under seismic tension le									
Displacements for DLS	δ _{N,seis,C2(DLS)}	[mm]	2.3	4.1	4.9	3.6	5.1	-	
Displacements for ULS	δ _{N,seis,C2(ULS)}	[mm]	8.2	13.8	15.7	9.5	15.2	12	100
Reduced anchorage depth									
Steel zinc plated, stainless steel A4,	HCR								
Tension load in cracked concrete	N	[kN]	2.4	3.6	6.1	9.0			
Displacement	δ_{N0}	[mm]	0.8	0.7	0.5	1.0	(2)	4	1.2
$\delta_{N^{\infty}}$		[mm]	1.2	1.0	0.8	1.1			
Tension load in non-cracked concrete N		[kN]	3.7	4.3	8.5	12.6		1	
Displacement	δ_{N0}	[mm]	0.1	0.2	0.2	0.2	-	*	4
200	δ _{N∞}	[mm]	0.7	0.7	0.7	0.7			13.5

Würth	Fixanch	or W-FA	Z
-------	---------	---------	---

Performance

Displacements under tension load

Annex C9

Table C10:	Displacements	under shear	load, W-FAZ
10010 010.	Diopidocinonic	dilaci cilcui	

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dep	oth	-							
Steel zinc plated									
Shear load in cracked and non-cracked concrete	٧	[kN]	6.9	11.4	17.1	31.4	36.8	64.9	96.8
Displacement	δ_{V0}	[mm]	2.0	3.2	3.6	3.5	1.8	3.5	3.6
	$\delta_{V\infty}$	[mm]	3.0	4.7	5.5	5.3	2.7	5.3	5.4
Displacements under seisn	nic shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,seis,C2(DLS)}}$	[mm]	3.0	2.7	3.5	4.3	4.7		
Displacements for ULS	$\delta_{V,seis,C2(ULS)}$	[mm]	5.9	5.3	9.5	9.6	10.1	-	
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	٧	[kN]	7.3	11.4	17.1	31.4	43.8	70.6	
Displacement	δ_{V0}	[mm]	1.9	2.4	4.0	4.3	2.9	2.8	-
$\delta_{V^{\infty}}$		[mm]	2.9	3.6	5,9	6.4	4.3	4.2	
Displacements under seisn	nic shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,seis,C2(DLS)}}$	[mm]	3,0	2.7	3.5	4.3	4.7		
Displacements for ULS	$\delta_{V,seis,C2(ULS)}$	[mm]	5.9	5.3	9.5	9.6	10.1		
Reduced anchorage dep	th								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6.9	11.4	17.1	31.4			
Displacement	δ_{V0}	[mm]	2.0	3.2	3.6	3.5	10.0	100	-
	$\delta_{V^{\infty}}$	[mm]	3.0	4.7	5.5	5.3			
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	٧	[kN]	7,3	11.4	17.1	31.4			
Displacement	δ_{V0}	[mm]	1.9	2.4	4.0	4.3	-	17-1	-
	$\delta_{V\infty}$	[mm]	2.9	3.6	5.9	6.4			1.11

Würth	Fixan	chor \	N-F	47

Performance

Displacements under shear load

Table C11: Characteristic values for tension loads, W-FAZ-IG, cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12	
Installation safety factor	γ ₂ = γ _{inst} [-]			1.	1.2		
Steel failure							
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16.1	22.6	26.0	56.6	
Partial safety factor	γMs	[-]	1.5				
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14.1	25.6	35.8	59.0	
Partial safety factor	γMs	[-]	1.87				
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor	ψс	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor according to CEN/TS 1992-4	k _{cr}	[-]	7.2				

Würth Fixanchor W-FAZ-IG

Performance

Characteristic values for tension loads, W-FAZ-IG, cracked concrete, static and quasi-static action

Table C12: Characteristic values for tension loads, W-FAZ-IG, non-cracked concrete, static and quasi-static action

Anchor size			M6	М8	M10	M12		
Installation safety factor $\gamma_2 = \gamma_{inst}$ [-]				1.2				
Steel failure								
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16.1	22.6	26.0	56.6		
Partial safety factor	γMs	[-]		1.	.5			
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14.1	25.6	35.8	59.0		
Partial safety factor	γмѕ	[-]		1.5	87			
Pull-out								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30		
Splitting (N ⁰ _{Rk,c} has to be replaced by N	N ⁰ _{Rk,sp.} The higher	resistance	of Case 1 and	d Case 2 may b	e applied.)			
Minimum thickness of concrete mem	nber h _{min}	[mm]	100	120	130	160		
Case 1								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]	3 h _{ef}					
Case 2								
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30		
Spacing (edge distance)	$s_{cr,sp}$ (= 2 $c_{cr,sp}$)	[mm]		5	h _{ef}			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80		
Factor according to CEN/TS 1992-4	k _{ucr}	[-]	10.1					

Würth Fixanchor W-FAZ-IG	
Performance Characteristic values for tension loads, W-FAZ-IG, non-cracked concrete, static and quasi-static action	Annex C12

Table C13: Characteristic values for shear loads, W-FAZ-IG, cracked and non-cracked concrete, static and quasi-static action

Anchor size			М6	M8	M10	M12	
nstallation safety factor $\gamma_2 = \gamma_{inst}$ [-]			1.0				
W-FAZ-IG, steel zinc plated							
Steel failure without lever arm, Installatio	n type V						
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5.8	6.9	10.4	25.8	
Steel failure without lever arm, Installatio	n type D						
Characteristic shear resistance	V _{Rk,s}	[kN]	5.1	7.6	10.8	24.3	
Steel failure with lever arm, Installation ty	pe V						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12.2	30.0	59.8	104.6	
Steel failure with lever arm, Installation ty							
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	36.0	53.2	76.0	207	
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γMs	[-]		1.	25		
Factor of ductility	k ₂	[-]		14	.0		
W-FAZ-IG, stainless steel A4, HCR							
Steel failure without lever arm, Installatio	n type V						
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5.7	9.2	10.6	23.6	
Partial safety factor	Ϋ́Ms	[-]	1.25				
Steel failure without lever arm, Installatio	n type D						
Characteristic shear resistance	V _{Rk,s}	[kN]	7.3	7.6	9.7	29.6	
Partial safety factor	γMs	[-]		1.	25		
Steel failure with lever arm, Installation ty	pe V						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	10.7	26.2	52.3	91.6	
Partial safety factor	Ϋ́мs	[-]		1.	56		
Steel failure with lever arm, Installation ty	pe D						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	28.2	44.3	69.9	191.2	
Partial safety factor	γMs	[-]		1.	25		
Factor of ductility	k ₂	[-]	1.0				
Concrete pry-out failure							
Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1.5	1.5	2.0	2.0	
Concrete edge failure							
Effective length of anchor in shear loading	J _f	[mm]	45	58	65	80	
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16	

Würth	Fixanc	hor W	-FAZ-I	G
-------	--------	-------	--------	---

Performance

Characteristic values for shear loads, W-FAZ-IG, cracked and non-cracked concrete, static and quasi-static action

Table C14: Characteristic values for tension and shear load under fire exposure, W-FAZ-IG, cracked and non-cracked concrete C20/25 to C50/60

Anchor size			M6	M8	M10	M12
Tension load						
Steel failure						
Steel zinc plated	1					
	R30		0,7	1.4	2.5	3.7
Characteristic	R60 N	k.s.fi [kN]	0.6	1.2	2.0	2.9
resistance	R90	(k,s,f) [kN]	0.5	0.9	1.5	2.2
	R120		0.4	8,0	1.3	1.8
Stainless steel	A4, HCR					
	R30		2.9	5.4	8.7	12.6
Characteristic	R60 N	k,s,fi [kN]	1.9	3.8	6.3	9.2
resistance	Kao	k,s,fi [KN]	1.0	2.1	3.9	5.7
	R120		0.5	1.3	2.7	4.0
Shear load						
Steel failure wit	hout lever arm					
Steel zinc plated						
	R30		0.7	1.4	2.5	3.7
Characteristic	R60	k.s.fi [kN]	0,6	1.2	2.0	2.9
resistance	R90	(k,s,fi [kN]	0.5	0.9	1.5	2.2
	R120		0.4	0.8	1.3	1.8
Stainless steel	A4, HCR					
	R30		2.9	5.4	8.7	12.6
Characteristic	R60	ksfi [kN]	1.9	3.8	6.3	9.2
resistance	R90	k,s,fi [kN]	1.0	2.1	3.9	5.7
	R120		0.5	1.3	2.7	4.0
Steel failure wit	n lever arm					
Steel zinc plated	1					
	R30		0.5	1.4	3.3	5.7
Characteristic	R60 M0	Rk,s,fi [Nm]	0.4	1,2	2.6	4.6
resistance	R90	Rk,s,fi [Nm]	0.4	0.9	2.0	3.4
	R120		0.3	0.8	1.6	2.8
Stainless steel	A4, HCR					
	R30		2.2	5.5	11.2	19.6
Characteristic	R60	Rk,s,fi [Nm]	1,5	3.9	8.1	14.3
resistance	R90	Rk,s,fi [Nm]	0.7	2.2	5.1	8.9
	R120		0.4	1.3	3.5	6.2

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

Würth Fixanchor W-FAZ-IG

Performance

Characteristic values for tension and shear loads under fire exposure, W-FAZ-IG cracked and non-cracked concrete C20/25 to C50/60

Table C15: Displacements under tension load, W-FAZ-IG

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2.0	3.6	4.8	8.0
Displacements	δ_{N0}	[mm]	0.6	0.6	0.8	1.0
	$\delta_{N^{\infty}}$	[mm]	0.8	0.8	1.2	1.4
Tension load in non-cracked concrete	N	[kN]	4.8	6.4	8.0	12.0
Displacements	δ_{N0}	[mm]	0.4	0.5	0.7	0.8
	$\delta_{N^{\infty}}$	[mm]	0.8	0.8	1.2	1.4

Table C16: Displacements under shear load, W-FAZ-IG

Anchor size		М6	М8	M10	M12	
Shear load in cracked and non-cracked concrete	V	[kN]	4.2	5.3	6.2	16.9
Displacements	δ_{V0}	[mm]	2.8	2.9	2.5	3.6
	$\delta_{V^{\infty}}$	[mm]	4.2	4.4	3.8	5.3

Würth Fixanchor W-FAZ-IG

Performance

Displacements under tension load and under shear load

Annex C15