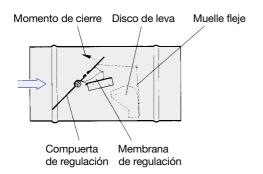

Regulador de caudal de aire

para sistemas de caudal constante Serie R

TROZ®TECHNIK

Trox Española, S.A.
Polígono Industrial
La Cartuja
E-50720 Zaragoza

Teléfono 976 50 02 50 Telefax 976 50 09 04 www.trox.es e-mail trox@trox.es


Contenido · Descripción

Descripción	. 2	Datos técnicos	
Aplicación	. 3	Ruido del flujo de aire, selección rápida	8
Ejecuciones y dimensiones RNS, RN	. 4	Ruido del flujo de aire, sin silenciador	9
Ejecuciones y dimensiones CA, CF y RS	. 6	Ruido de radiación	10
Definiciones	. 7	Información de pedido	1 [.]

Reguladores de caudal de aire Tipo RNS, NW 80...125

Los reguladores de caudal Trox de la serie R son reguladores automecánicos para sistemas de caudal constante. Los reguladores de caudal trabajan sin ayuda de energía externa. Una compuerta de regulación se posiciona por la acción de la presión dinámica, de forma que el caudal de aire fijado se mantiene constante en toda la gama de diferencia de presiones.

La fuerza aerodinámica del aire en circulación produce en la compuerta de regulación un momento de giro en la dirección de cierre, incrementado con la ayuda de una membrana de caucho que sirve a la vez de amortiguador de vibraciones. El momento de cierre, se compensa por un muelle de resorte, que se adapta a un disco de leva, de forma que a cada variación de presión se ajusta la posición de la compuerta de regulación de forma que el caudal de aire permanece constante con muy pequeña variación.

El caudal de aire fijado puede volverse a fijar facilmente desde el exterior sin necesidad de herramientas, mediante una escala situada en el exterior del regulador. Para una simplificación en la realización de los proyectos, los reguladores se pueden pedir y montar según el diámetro nominal, fijándose posteriormente en obra el caudal de aire deseado, con lo que se realiza una puesta en funcionamiento de forma sencilla y segura.

Los aparatos se pueden suministrar también con una carcasa para amortiguación del ruido de radiación. Para otras exigencias acústicas, adicionalmente puede utilizarse el silenciador RS-A, RS-B, CA ó CF/CS.

Aplicación

Económica puesta en marcha

Rápidamente y sin necesidad de mediciones se tiene el caudal de aire fijado en la escala exterior del regulador R.

La ventaja frente a compuertas de cierre consiste en que no son necesarias mediciones ni ajustes posteriores.

En el caso de que se produzcan variaciones en la presión del sistema, la instalación se autoequilibra automecánicamente debido a la reacción rápida del regulador R para adaptar la posición de su compuerta a las nuevas condiciones del sistema manteniendo el caudal de aire constante dentro de los valores fijados.

Para una variación del valor fijado del caudal de aire en los reguladores RN puede montarse un servomotor eléctrico.

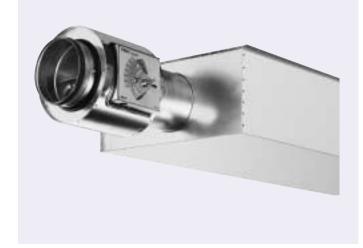
Sencillo montaje


Opcionalmente se pueden suministrar con la junta Trox en todos los tamaños 80 a 400 con lo que sin necesidad de material de sellado adicional, se tiene con un reducido coste de montaje una alta estanqueidad. Los extremos del conducto han de estar limpios y sin rebabas.

Es recomendable la fijación del conducto con el cuello del regulador mediante tornillos rosca chapa o bien remaches ciegos.

Exigencias acústicas

Para optimizar el ruido del flujo de aire se pueden suministrar en función de las exigencias silenciadores circulares CA ó CF/CS con 50 mm de espesor del material de absorción o silenciadores rectangulares RS-A y RS-B.


Regulador de caudal de aire Tipo RN con servomotor

Regulador de caudal de aire Tipo RND con silenciador circular CA ó CF (Montaje en obra)

Regulador de caudal de aire Tipo RND con silenciador rectangular RS-A (Montaje en obra)

Batería de calefacción eléctrica ó con agua

Ejecuciones · Dimensiones

Características constructivas

Carcasa

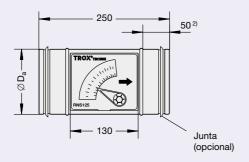
- Conexiones circulares en ambos lados adaptadas a DIN 24145 ó DIN EN 13180 con ranura para junta (La junta puede montarse en fábrica o posteriormente en obra, con el tamaño 80 se realiza mediante
- ó con cuellos para conexión rápida (no con RNS) Estanqueidad a través de la carcasa clase A, DIN EN 1751

Regulación del caudal de aire

- Automecánico sin ayuda de energía exterior
- Para impulsión o retorno

- Temperatura de funcionamiento 10 a 50°C Gama de presiones de 50 a 1000 Pa
- Posición de montaje horizontal ó vertical
- Precisión de funcionamiento incluso en condiciones de funcionamiento desfavorable (es necesario un tramo recto delante del regulador de 1,5 D)
- Compuerta montada sobre cojinetes
- Membrana de regulación a la vez que elemento de amortiguación
- Gama de caudales 4 : 1
- Alta exactitud de caudal
- Fijación del caudal de aire con una escala exterior, con una exactitud aproximada ± 4 %
- La regulación mecánica no precisa mantenimiento

Tabla 1: Dimensiones en mm


Tamaño				Card	casa						Brid	das		
nominal	$\emptyset D_a$	ØD _{a1}	$\emptyset D_i$	$\emptyset D_1$	L ₁	L ₂	L ₃	L ₄	$\emptyset D_2$	L ₅	S	b	Ød	n 1)
80	79	181	-	_	250	232	330	_	_	_	_	_	-	_
100	99	200	100	111	310	232	310	298	132	290	3	25	9,5	4
125	124	220	125	136	310	232	310	298	157	290	3	25	9,5	4
160	159	262	160	171	310	232	310	298	192	290	4	25	9,5	6
200	199	300	200	211	310	232	310	298	233	290	4	25	9,5	6
250	249	356	250	261	400	317	400	388	283	380	4	25	9,5	6
315	314	418	315	326	400	317	400	388	352	380	4	30	9,5	8
400	399	498	398	411	400	317	400	388	438	380	4	30	9,5	8

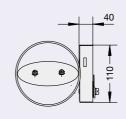
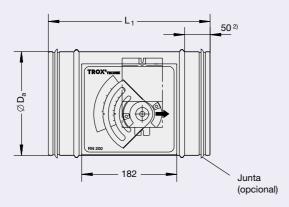
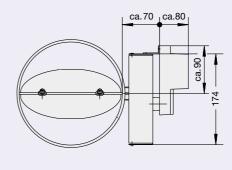
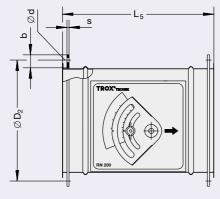

1) n = nº de taladros en las bridas

Tabla 2: Peso en kg


Tamaño nominal	RN	RNS	RND		dicional Servomotor
				Diluas	
80	1,4	1,4	2,2	_	1,0
100	1,8	1,8	3,6	0,6	1,0
125	2,0	2,0	4,0	0,7	1,0
160	2,5	-	5,0	1,0	1,0
200	3,0	-	6,0	1,4	1,0
250	3,5	-	7,3	1,8	1,0
315	4,8	-	9,8	2,5	1,0
400	5,7	_	11,8	3,9	1,0







Ejecución con bridas

2) 30 para tamaño 80

RND

Ejecuciones · Dimensiones

Servomotor

- Para variación del caudal de aire (No RNS)
- Eléctrico 24 VAC, 24 DC ó 230 VAC
- Montado en fábrica
- Reducido espacio por montaje compacto

Atenuación acústica RND

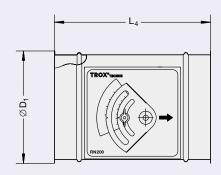
- Para reducir el ruido de radiación
- Envolvente exterior de chapa de acero galvanizado
 Revestimiento de material de absorción
- Junta de goma para aislamiento

Materiales

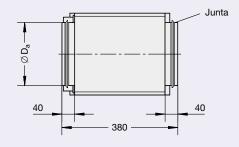
- Carcasa y lama de chapa de acero galvanizado
- Muelles de acero inoxidable
- Membrana de poliuretano
- Casquillos de PTFE

Baterías de agua caliente WL

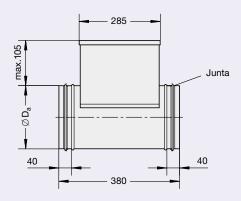
- Suministro separado para recalentamiento del caudal de aire Marco de chapa de acero galvanizado Adaptadas a conductos según DIN 24145 ó DIN EN 13180. Con el mismo diámetro de conexión a ambos lados
- Tubos de cobre y lamas de aluminio
- Estándar con dos tubos en fondo Diámetro de conexión R¹/2" "con conexión roscada" (Montaje a realizar por el cliente)
- Presión de funcionamiento máxima 8 bar
- Para agua caliente hasta 100 °C
- Montaje horizontal o vertical con cualquier dirección del flujo de aire

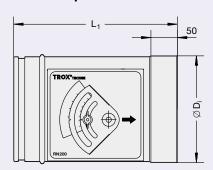

Batería eléctrica EL

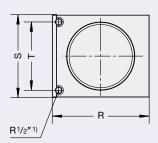
- Suministro separado para recalentamiento del aire
- Marco de chapa de acero galvanizado
- Adaptadas a conductos según DIN 24145 ó DIN EN 13180.
- Con el mismo diámetro de conexión a ambos lados
- Elementos de calefacción de acero inoxidable 1.4541
- Protegidas contra sobrecalentamientos cableada con caja de conexión con bornas para la conexión eléctrica
- Montaje horizontal o vertical, con la caja de conexión a elección arriba o lateral
- Monofásico 230 VAC (Tamaños de 100 a 200), bifásico 400 VAC (Tamaño 250) y trifásico 400 VAC (Tamaños 315 en 400)


Tabla 3: Dimensiones en mm, Peso en kg, Potencia EL en kW

Tamaño		D	imensione	es		Pe	so	Q
nominal	$\emptyset D_a$	R	S	Т	N	WL	EL	in kW
80	-	-	-	-	-	-	-	-
100	99	225	183	140	103	3,4	2,0	0,4
125	124	225	183	140	128	3,4	2,5	0,9
160	159	305	258	215	163	5,1	2,9	1,2
200	199	305	258	215	203	5,1	3,7	2,1
250	249	385	333	290	253	7,7	4,5	3,0
315	314	460	408	365	318	10,0	6,7	6,0
400	399	534	479	400	403	11,6	8,1	9,0


Cuello en ambos lados


Batería agua caliente WL



Batería eléctrica EL

Conexión hembra por un lado

1) se suministra con aro de fijación para acoplamiento

Ejecuciones · Dimensiones CA, CF y RS

Tabla 4: Dimensiones en mm y Peso en kg

año						RS-	A/RS	-В						Pe	SO.
Tamaño	ØDi	ØD _{a3}	С	В	Н	L ₇	L ₈	Е	F	R	G	K	М	RS-A	RS-B
80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
100	100	99	100	222	160	1000	1250	120	180	61	160	-	140	8,0	10,0
125	125	99	100	272	170	1000	1250	140	230	71	210	-	140	10,0	12,0
160	160	124	160	412	210	1250	1500	170	330	81	310	190	140	18,0	21,0
200	200	159	160	652	280	1500	1900	220	570	81	550	350	200	35,0	42,0
250	250	199	250	902	310	1500	1900	255	835	81	800	550	200	44,0	56,0
315	315	249	300	1002	360	1500	1900	285	935	101	900	600	200	55,0	67,0

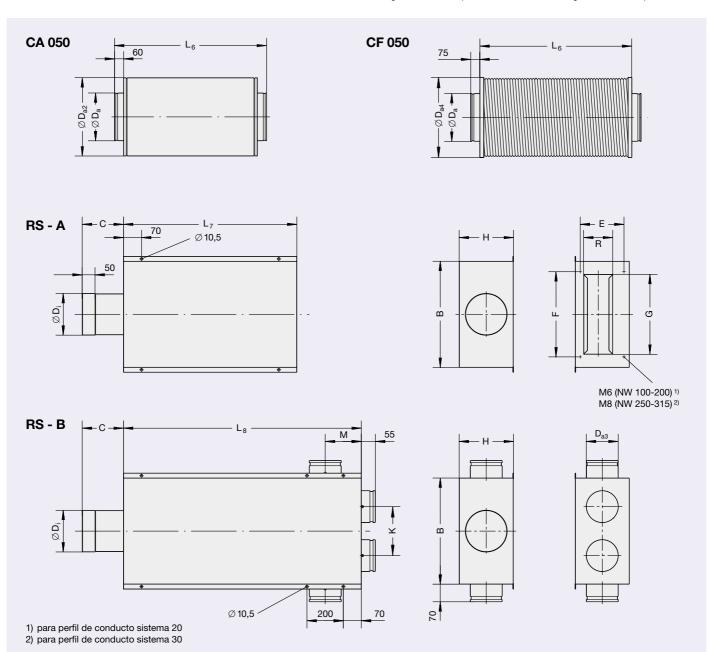

Tipo RS no disponible en tamaño 400

Tabla 5: Dimensiones en mm y Peso en kg

0			CA0	50 / CF	050						Peso			
Tamaño					L	6			CA050			CF	050	
<u>ra</u>	ØDa	ØD _{a2}	ØD _{a4}	500	1000	1500	2000	500	1000	1500	500	1000	1500	2000
80	79	-	191	0	0	0	0	-	-	-	0,9	1,5	2,2	2,8
100	99	200	211	x/o	x/o	0	0	4,0	7,0	-	1,1	1,8	2,5	3,2
125	124	225	235	x/o	x/o	0	0	5,0	9,0	-	1,2	2,0	2,9	3,7
160	159	260	262	x/o	x/o	0	0	7,0	12,0	-	1,4	2,4	3,3	4,3
200	199	300	311	x/o	x/o	0	0	7,0	13,0	-	1,7	2,9	4,0	5,1
250	249	350	368	x/o	x/o	x/o	0	9,0	16,0	22,0	2,1	3,5	4,8	6,2
315	314	415	413	x/o	x/o	x/o	0	12,0	20,0	28,0	2,4	4,0	5,6	7,2
400	399	500	461	x/o	x/o	x/o	0	15,0	25,0	34,0	3,1	5,1	7,1	9,1

x = Longitud suministrables tipo CA050

o = Longitud suministrables tipo CF050

Definiciones · Datos técnicos del flujo de aire

Definiciones

en Hz: Frecuencia media por banda de octava

en dB: Potencia sonora (re 1 pW) del ruido del flujo de aire L_W

en el conducto de conexión

en dB: Potencia sonora (re 1 pW) del ruido de radiación en las correspondientes situaciones de montaje.

Figura 1 a 5 de la tabla 10.

L en dB(A): Presión sonora (re 20 µPa) del ruido del flujo de aire

en dB(A), con una absorción en el local de 8 dB/Oct.

L₁ en dB(A): Presión sonora (re 20 μPa) del ruido de radiación

en dB(A), con una absorción en el local de 8 dB/Oct.

NC : Curva límite del espectro de presión sonora

con una absorción en el local de 8dB/Oct.

Q en kW: Potencia calorífica

en °C: Temperatura entrada de aire

en °C: Temperatura salida de aire

ṁ_w I/h: Caudal de agua

 Δp_v kPa: Pérdida de carga agua

PWW en °C: Temperatura agua

en l/s ó. m3/h: Caudal de aire

en Pa: Diferencia de presión (medida 2D Δp_a

delante y detrás del regulador)

en Pa: Diferencia de presión mínima $\Delta p_{q min}$

ΔŸ en ± %: Desviación del caudal de aire del valor fijado

(Montadas directamente en zonas turbulentas se han de considerar mayores

en dB: Coeficientes de corrección para la potencia ΔL_{1a5}

sonora radiada

 ΔL_{A1a5} en dB: Coeficientes de corrección para la presión

sonora radiada

Todos los niveles sonoros fueron medidos en cámara anecoica. Los datos de potencia sonora se midieron y corrigieron según ISO 5135 en Diciembre 1997.

Tabla 6: Datos flujo de aire

año	V	7	ΔŸ	Δp_{gmin}
Tamaño	en I/s	en m³/h	en ± %	en Pa
80	11 20 30 45	40 72 108 162	20 15 10 8	100 100 100 100
100	22 40 60 90	80 144 216 324	10 8 6 5	50 50 50 50
125	35 60 100 140	126 216 360 504	10 8 6 5	50 50 50 50
160	60 105 175 240	216 378 630 864	10 8 6 5	50 50 50 50
200	90 185 275 360	324 666 990 1296	10 8 6 5	50 50 50 50
250	145 240 435 580	522 864 1566 2088	10 8 6 5	50 50 50 50
315	230 380 690 920	828 1368 2484 3312	10 8 6 5	50 50 50 50
400	350 700 1050 1400	1260 2520 3780 5040	10 8 6 5	50 50 50 50

Tabla 7: Potencia de baterías de calefacción con agua

				PWV	V 60/40), t _e = 1	5 °C	PWV	V 90/70), t _e = 1	5 °C
Tamaño	V	<i>'</i>	$\Delta p_{g\text{min}}^{ \star}$	Q	ta	ṁ _w	Δp_v	Ċ	ta	ṁ _w	Δp_{v}
Tan	en I/s	en m³/h	en Pa	en kW	en °C	en I/h	en kPa	en kW	en °C	en I/h	en kPa
	22	80	10	0,4	30	18	0,1	0,9	46	38	0,3
100	40	144	20	0,6	26	24	0,2	1,3	40	55	0,6
	60 90	216 324	45 90	0,7 0,8	24 22	28 33	0,3 0,4	1,7 2,2	37 30	73 96	1,0 1,0
	35	126	20	0,5	27	22	0,2	1,1	42	51	0,7
125	60	216	45	0,7	24	28	0,3	1,7	37	73	1,0
	100 140	360	110	0,8	21	35	0,4	2,3	34	102	1,0
		504	205	0,9	20	39	0,5	2,8	31	124	2,0
	60	216	10	1,1	30	49	1,0	2,6	50	116	3,0
160	105 175	378 630	25 60	1,6 2,2	27 25	68 95	1,6 2,0	3,8 5,2	44 39	167 230	6,0 10,0
	240	864	110	2,2	24	120	4,0	6,3	36	279	14,0
	90	324	20	1,4	28	62	1,0	3,4	46	151	5,0
200	185	666	70	2,3	25	99	3,0	5,4	39	238	11,0
200	275	990	140	3,0	24	132	4,0	6,8	35	302	16,0
	360	1296	230	3,6	23	157	6,0	8,0	33	355	21,0
	145	522	15	2,3	28	100	1,0	5,7	47	253	3,0
250	240	864	35	3,1	26	135	1,5	7,9	42	350	5,0
	435 580	1566	105	4,7	24	202	2,0 3,0	11,4	36 34	504	9,0
		2088	180	5,8	23	252		13,5		598	12,0
	230 380	828	15 35	3,6	28	158	1,0 1,6	9,1 12,6	47 42	405	3,0
315	690	1368 2484	105	5,0 7,7	26 24	217 335	2,0	18,2	36	558 805	5,0 9,0
	920	3312	180	9,7	24	420	3,0	21,6	34	956	13,0
	350	1260	15	5,5	28	241	1,0	13,8	47	611	4,0
400	700	2520	55	9,1	26	394	2,0	21,4	40	949	8,0
100	1050	3780	115	12,4	25	540	3,0	27,5	36	1215	12,0
	1400	5040	195	14,8	24	646	4,0	32,6	34	1443	16,0

^{*} el factor adicional debe ser considerado

Ruido del flujo de aire con silenciador

Ejemplo

Dados: RN Tamaño 200

 \dot{V} = 160 l/s \dot{o} 576 m³/h

 $\Delta p_g = 250 Pa$

Presión sonora admisible en el local 45 dB(A) con 4 dB/Oct. de absorción en el local

Se busca: Ruido del flujo de aire en el local

Resultado: L aprox. 42 dB(A),

La exigencia se cumple con CF050, de 500 mm

de longitud.

Ejemplo

Dados: Tamaño 125

 \dot{V} = 60 l/s ó 216 m³/h

 Δ p_g = 250 Pa

Presión sonora admisible en el local 45 dB(A)

con 4 dB/Oct. de absorción en el local

Se busca: Ruido del flujo de aire en el local

Para ver el cálculo ver la página 9!

Tabla 8: Selección rápida ruido flujo de aire

					Δŗ	o _g =	100	0 Pa	3				4	Δp _g	= 2	250	Pa	a					Δp_g	= 5	00	Pa				Δ	p _g :	= 10	000	Pa	i	
	'	V	con 500	CF of	con C	F cog. 5	on CA 00 lg.	con 100	CA O lg.	con RS-A	co 50	n CF 10 lg.	cor 100	n CF 10 lg.	con 500	CA lg.	con 1000	CA Olg.	co RS-	n -A	con CF 500 lg.	coi	n CF 00 lg.	con 500	CA c	on CA	RS	on S-A	con CF 500 lg.	con 100	n CF 10 lg.	con (CA c	con C 1000 l	A c g. R	on S-A
Tamaño	s/I uə	en m³/h	L en dB(A)		L en dB(A)	NC PROBA		L en dB(A)		L en dB(A)	L en dB(A)		L en dB(A)	NC	L en dB(A)	NC	L en dB(A)	NC	L en dB(A)	NC	L en dB(A)	L en dB(A)	NC	L en dB(A)	NC -	NC NC	L en dB(A)	NC	L en dB(A)	L en dB(A)	NC	L en dB(A)		L en dB(A)	NC L en dB(A)	NC
	11	40	<	-	< •	< -	- -	_	-	- -	- 18	-	+	<	-	\equiv	-	-	-	-	22 2 ⁻	+	<	-	-	- -	-	_	28 24	+	<	\equiv	\equiv	- [-	- -	
	20	72	17	_	-	< -	- -	-	-	_ -	- 21	-	-	<	-	_	_	-	-	-	25 19	_	-	-	- -	- -	<u> -</u>	_	29 24	-	\vdash	_	4	4	- -	니
80	30	108	-	-		< -		-	-	- -	- 28	+	-	<	-	4	-	-	-	-	30 23	-	+	-	- -		-	-	33 25	+	<	-		#	#	H
	40 45	144 162		\rightarrow	-	6 - 9 -	+-	-	-	+	- 33 - 36	-	+	18 21	-	-	_	-	-	-	35 29 38 32	+	17	-	-	+-	-	-	38 32 40 34	+	17 20	_	- -	+	+-	H
	22	80	15	-		9 - < 1	6 <	<	_	< <	+	+	+	Ξ.	- 25	- 18	- <	_	-	-	31 27	_	1= :	33	27 1	9 16	-	<	37 38	+		30 1	38 5	 25 2	28 <	<
	40	144	22	-		< 2	_	<		< <	١.,	+-	+			-	19	<	<	\dashv	34 27	+	+		-	3 16	+	<	40 37	+	-		-	-	6 20	-
100	55	198	-	_	_	< 2	_	<u> </u>	_	< <	1.	-	+		-	-	24	\rightarrow	16	\rightarrow	39 3	_	-		-	8 18	+	<	44 39	-	31	_	_	_	7 23	-
	70	252	-	-	-	< 3	_	-	-	15 <	+	+	+		-	\rightarrow	_	-+	21	\dashv		+	28	-	39 3	_	+	<	47 40	+	-	-	_	_	8 26	+
	90	324	36	30 3	31 2	4 3	6 28	30	25 2	22 <	: 42	35	36	28	43	36	34	27	25	<	47 40	40	33	49	42 3	7 29	29	19	51 44	43	36	54	47 S	39 3	31 31	23
	35	126	19	<	< •	< 2	0 <	<	<	< <	: 29	22	22	<	31	24	20	<	<	<	36 33	3 29	25	38	34 2	8 24	<	<	44 42	36	35	45 4	14 3	35 3	34 17	16
	60	216	26	17	19 -	< 2	8 20	17	<	< <	: 34	27	28	19	36	28	26	17	<	<	40 33	34	25	42	34 3	2 24	17	<	46 42	39	35	48 4	43 3	37 3	3 20	<
125	90	324	33	25 2	27 1	8 3	5 28	25	16	< <	: 40	32	34	25	42	34	32	23	19	<	46 37	7 39	30	48	39 3	7 28	22	<	51 44	44	37	53 4	45 4	12 3	35 26	17
	115	414	36	28	30 2	1 3	8 31	28	19 1	8 <	: 43	35	37	28	45	37	35	26	22	<	49 42	2 43	35	51	44 4	1 33	26	18	55 47	49	40	57 4	48 4	17 3	30	21
	140	504			-	6 4		-	_	21 <	``	+	_	-		40	_	_	-	-	52 44	_	38	-	_	4 36	+	_	57 51	+	-		-	_	33	-
	60	216	_		_	8 2		-	_	< <	-	+-	-		$\overline{}$	32	_	25	<	\rightarrow		33	<u> </u>	-		5 30	-	<	46 43	-				-	5 17	-
	105	378		-		2 3		-	-+	< <	1 '-	+-	+	-	43	-	-	32	<	\rightarrow	48 44	+-	+			3 39	+ -	<	52 49	+ -	-	-	-	-	1 22	_
160	145	522	-	\rightarrow	_	3 3	_	_	_	< <	-	-	+		47	\rightarrow	_	\rightarrow	17	\rightarrow	52 48	_	+	-	-	8 45	+	16		+	-	_	-	_	6 28	-
	190	684		-	-	7 4				< <	-	+	+	-	-		_		22	\rightarrow		-	46		51 5	_	+ -	_		57	1	-	-	_	0 32	_
	240 90	864 324	42 29	-	-	0 4	_	_	_	20 < < <	\ 	-	44 27		$\overline{}$	33	_	39 24	24 <	15 <	57 5°	+	47	-	52 5 39 3	3 48	+-	24	64 61 47 45	60	-	66 5	-	_	33 35 38 21	_
	160	576	35	-	_	8 3	_	_	_	< <	-	-	_	-	43	\rightarrow	_	\rightarrow	16	\rightarrow	47 44	_	35	-	_	1 35	-	< 18	_	-	-	-	-	_	2 26	_
200	230	828	-	-	-	1 4	_	-	-+	17 <	+	+	+		-	\rightarrow	_	-	22	\dashv	52 48	-	40	_	-+	5 40	+	-		+	\vdash	-	-	_	5 30	+
200	300	1080	-	-	-	8 4	_	_	_	23 <	+	-	-		50	\rightarrow	_	\rightarrow	\rightarrow	20		-	41	-	50 4	_	-	24	59 56	+	-	_	_	_	8 33	-
	360	1296	45	41 3	38 3	3 4	6 41	39	33 2	27 18	8 51	46	42	36	52	46	43	36	-	-	56 52	2 49	42	-	52 4	9 42	33	28	62 58	55	50	62 5	58 5	55 5	0 37	32
	145	522	32	27 2	22 1	5 3	2 27	22	15	< <	: 40	36	31	27	40	36	32	27	<	<	46 42	2 39	36	46	42 3	9 36	17	<	52 48	45	43	52 4	48 4	15 4	3 23	23
	255	918	36	32 2	28 2	2 3	7 32	29	22	< <	: 44	40	36	32	45	40	37	32	19	<	50 46	3 44	39	51	46 4	4 39	23	16	56 53	50	46	57 5	53 5	50 4	6 28	25
250	365	1314	39	35	32 2	7 4	0 35	33	27 1	8 <	: 47	43	39	34	48	43	40	34	24	17	53 49	9 47	41	54	49 4	7 41	28	21	60 56	54	49	61 5	56 5	54 4	9 32	27
	470	1692	-			0 4	3 39	36		23 <	-	_	43		51	45	44	38		\rightarrow	55 5°	_	+	-	51 5	0 44	32	27	62 58	56	50	63 5	58 5	56 5	36	32
	580	2088	-	$\overline{}$	_	3 4	_	_	-	29 1	-	-	-	-	53	_	_	_	$\overline{}$	27	-	_	46	_	53 5	_	_	_	64 60	+-	$\overline{}$	65 6	_	_	4 39	_
	230	828		-	-	0 3	_	+		< <	-	+-	+		40	-	_	-	15	\dashv	46 43	+	_		_	4 40	+	19	52 50	+	_			_	7 28	-
0.15	400	1440		-	_	7 3	_		_	16 <	-	-	-		46	\rightarrow	_	\rightarrow	22	\rightarrow	52 48	_	-	-	48 4	_	-	-	56 55	-	-	-	_	_	0 32	_
315	575	2070	-	-	_	2 4	_		_	24 <	_	_	_			46		_	_	-	56 52	_	_	-	_	_	_	_		_	-			_	2 37	-
	750 920	2700	-	_	41 3 48 4	7 4 1 5	_	-	-	30 2: 36 2:	2 52 8 55	-	-		-	48	_	\rightarrow	\rightarrow	_	59 54 61 56	_	-	-	54 5 56 5	_	37	33		-	-	_	_	_	6 45	-
	350	3312 1260	-	-	_	2 4	_	-	28	_	6 53 - 47	_	_	-	48	_		45 40	_	_	53 48	_	_	_	36 S	_	_	-	60 57	_	-	61 5	_	_	_	43
	610	2196	-			8 4	_	_	_	_	- 52	-	+		53	\rightarrow	_	43	_	_	59 55	_	-	-	_	6 52	+	-	63 61	+	-	65 6	_	_	_	H
400	870	3132	-	-		3 5	_	-	41	_	- 49	+	43		-	-	49 44		_	\rightarrow		3 57	_	-	-	8 53	+	-		+	-	_	-	_	60 –	H
100	1130	4068	-	_	_	_	4 49	-	45		- 58	_	_		59	_	53	_	_	_	64 59	_	+	64	_	9 54	_	-		+	-	70 6	_	_		-
	1400		-	\rightarrow	_	-	6 52	-	49	_†-	- 61	+	+	-	-	58	\rightarrow	\rightarrow	_	-	66 59	-	-	-	-	_	+	-	-	-	-	72 6	-	_	-	\forall
		Infariare	щ.														_	- 1	_	_			-		-,-		_	_		1 -						

< esta para valores inferiores a 15

Ruido del flujo de aire sin silenciador

Cálculo								
f_{m}	63	125	250	500	1k	2k	4k	8k
L _w	61	62	58	54	49	44	40	37
Amortiguación por reflexión	20	14	9	4	1	0	0	0
Amortiguación por curvas en el conducto 1)	0	0	0	0	1	2	3	4
Amortiguación por absorción en el local ¹⁾	4	4	4	4	4	4	4	4
	37	44	45	46	43	38	33	29
Corrección a dB(A)	-26	-16	- 9	- 3	0	1	1	- 1
Valor corregido	11	28	36	43	43	39	34	28

Resultado: L aprox. 47 dB(A) por suma logarítmica, la exigencia no cumple sin silenciador. Es necesario un silenciador CF050, 500 mm de longitud. Repitiendo el cálculo se tiene L aprox. 37 dB(A) con lo que se cumple la exigencia.

Tabla 9: Ruido del flujo de aire

		$\Delta p_g = 100$ \dot{V} $L_w \text{ en dB}$		0 F	Pa						Δρ) _g =	= 2	250	P	а					Δ	pg	= :	500	P	а					Δ	Δpg	=	100	00	Pa								
	'	V			I	-w '	en	ı d	iΒ							L	-w	en	dl	В			_				L	, er	ո d	В							L	_w e	n	dB				
0		ے ا				f _m (en	H	łz			AB(A)	1			f	m (en	H	z			3(A)				fm	er	ı H	z			3	}			f	_m e	n I	Hz			A M	
Tamaño	s/l	en m³/h	63	125	_	_	_			١		2 4	-	33	2	250					0	00	L en dB(A)		23	52	250				9	0	L en dB(A)		23	125		_			2	10	en dB(A)	
Tar	en I/s	eu	ľ	-	5	ע ע	กี	ĕ	2000	4000	8000	5 a	S S		\ ``	2	į		≦	2000	4000	80	Γe	2	ľ	=	2	2	1000	2000	4000	8000	Le	2	ľ	F	Š	2	1000	2000	4000	8000		
	11	40	+-	-	+	_	\rightarrow		+	-	-	-		-	-	-	-	_	\rightarrow	\rightarrow	-		_	-	_	-	49	$\overline{}$		_	-	_	_	+	-	+	+	-	-	_	_	_	+-	-
00	20	72	67		+	- -	-	35		35		_			_	5 5										_	53			47		46		_		63				2 51				49
80	30 40	108 144	58 58	57 60	+	_	-	40 43	+	-	-	_	_	-	-	1 62	_	_	\rightarrow	-	45 48	_	_	_	_	-	59 62	-	-	_	-	_	_	-	-	_	_	_	-	_	_	_	5 54	-
	45	162	55		+-	-	\rightarrow	43 44	-	+	+-	_	-	-	<u> </u>	6 64	_	_	\rightarrow	\rightarrow	-		-	-	_	-	64		_	_	-	_	-	+	+	71	_	3 64	_	-	_	_	3 56	-
	22	80	-	50	+	2 3	-	31	24	+	+	+	÷	+	_	+	+	5 4	-	$\overline{}$	-		_	-	_	_	54		_	_	-	43	-	_	-	64	-	+	+	0 51	_	-	5 51	+
	40	144	61	55	4	8 4	4	38	32	25	5 18	3 3	3 27	66	58	3 55	5 5	1 4	6	42	37	33	41	35	70	62	59	56	51	47	47	45	47	41	78	67	66	62	2 5	7 53	3 53	3 55	53	50
100	55	198	-	58	+	_	\rightarrow	41	+	-	-	-		-	-	-	-	_	\rightarrow	-	-		_	-	-	-	63	-	-	_	_	_	-	-	-	+-	+-	_	+-	_		_	+-	-
	70	252 324	60	60 62	+-		-	45	-	30	_	7 39	_	-	_	63	_	_	\rightarrow	_					_	_	67							-	-	71	_	+-		3 60			58	-
	90 35	126	-	50	-	_	_		_	-	-	3 29	_	_	_	_	_	_	_	$\overline{}$	_	_	_	_	—	_	70 56	$\overline{}$	_	_	$\overline{}$	_	_	_	-	_	_	_	_	_	_	_	3 54	$\overline{}$
	60	216	60		+	-	-	40	-	27	+	_	_	-	_	-	+		\rightarrow	-				-	-	_	62	-					-	-	-	_	+	-	_	_	_	_	7 56	1
125	90	324	62	_	+	_	11	46	+	-	-	-	_	-	-	-	-	_	\rightarrow	\rightarrow	-	_	_	_	-	-	68	-	-	_	-	_	_	+	-	_	+	-	-	-	_	-	60	-
	115	414	64	65	5	7 5	3	49	44	40	3	3 4	4 38	67	7 72	2 65	6	0 5	6	51	47	45	51	45	70	75	71	67	62	58	54	53	58	52	75	75	75	_	-	_	_	_	64	-
	140	504	65		+	9 5	-	52	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	73	_	-	_	$\overline{}$	_	_	-	-	_	_	_	_	_	_	_	66	_
	60 105	216	59	-	+		-	40		28	-		_	_	-	52	_	_	\rightarrow	_			_		_	_	56							-	-	-	_	_	-	_	_	_		52
160	145	378 522	61	59 59	+	2 4 3 4	\rightarrow	42 45	+	-	-	9 4															65 69																65	-
100	190	684	64	_	+	6 5	\rightarrow	5 0	-	43	-	-	$\overline{}$	_	_	2 65	-	_	\rightarrow	$\overline{}$	-		_	-	_	_	71	$\overline{}$	-	_	_	_	-	-	-	_	76	_	1 69	$\overline{}$	3 66	_	68 68	+-
	240	864	62	-	+	_	\rightarrow	53	+-	47	+	+-	_	+-	+-	-	+	-	\rightarrow	_	_		_	-	77	-	73				_	_	_	-	-	+	+	+-	+	_	_	+	3 70	67
	90	324	57	50	4	1 4	0 ;	39	-	+-	1 2	-	5 29	_	-	-	-	_	\rightarrow	49							51								-	_	_	1 55	-	_	_		59	
	160	576	-	54	-	_	-	43	_	_	_	_		-	_	_	_	_	\rightarrow	-					_	_	60							_	-	_	_	_	_	_		_	_	-
200	230	828	65		+-		-	48	_	-	-) 4	_	-	-	-	_	_	\rightarrow	\rightarrow			-	-	_	-	63	-			-	_	-	+	-	_	+	-	-	-	_	_	64	
	300 360	1080 1296	70	-	+	_	-	50 52	-	-	_	3 4	_	-	_	_	_	-	\rightarrow	_			_	-	-	_	65 67						-	_	-	_	_	_	_	_	_	_	_	-
	145	522	47	-	+	_	-	39	+-	-	-	+	_	-	_	5 5	-	-	-	$\overline{}$	-	_	_	_	-	_	55		_	_	-	_	_	+	-	_	+	3 59	-	_	_	+	1 62	-
	255	918	61	52	+	_	\rightarrow	42	+	+-	+	-	_	-	-	_	-	-	\rightarrow	_	-		_	-	-	-	62	-	-	_	-	_	-	-	-	_	+-	_	+-	_		_	-	
250	365	1314	65	57	4	9 4	.9	46	49	45	3	3 4	5 41	70	66	57	7 5	5 5	2	55	52	47	52	47	72	70	63	60	58	61	58	55	58	53	78	74	70) 67	6!	5 68	66	65	66	61
	470	1692	69	-	-	_	\rightarrow	49		-	_	2 49	_	-	-	-	-	_	\rightarrow	\rightarrow	-	_	_	_	_	-	65	_	-	_	-	_	_	+-	-	_	+	_	-	_	_	_	67	+-
	580	2088	72	_	-	6 5	$\overline{}$	52	_	-	-	3 5	_	-	-	2 62	-	_	-	_	-	_	_	_	-	_	68	_	_	_	-	_	_	+-	-	80	-	-	-	3 71	_	-	68	-
	230 400	828 1440	55	48 54	+	_	-	41 45	+	3:	-	_	_	+	+	5 48	_	_	\rightarrow	_				_	_	_	54 61							_	-	_	_	_	_	_	_	_	63	-
315	575	2070	-	57	+	-	\rightarrow	43 47	_	45	٠.	_	3 41	-	-	-	-	-	\rightarrow	_			_	_	-	-	64				_	_	_	-	-	+	_	_	-	_	-	_	65	
0.0	750	2700	-	61	٠.	- 1	-		51	_	_	3 49		_	_	_	_	_	\rightarrow	_				_	_	_	67				_		_	_	_	_	_	_	_	_				
	920	3312	70	65	5	8 5	6	53	54	-	-	_	2 47	76	70	64	1 6	0 5	8	60	58	54	58	53	80	77	69	65	63	65	64	62	63	58	83	81	74	1 71	70	0 70	69	67	69	63
	350	1260	-	-	+	_	\rightarrow		+	-	-	-	_	-	-	-	_	_	\rightarrow	\rightarrow	-		_	_	-	-	59	$\overline{}$	-	_	-		_	+-	-	_	-	_	-	_	_	_	-	-
400	610	2196	-	56	+	-	\rightarrow		+	-	-	-	_	+-	+	+-	-	-	\rightarrow	_	_		_	-	-	-	63	_	_	_	-	_	-	+-	-	+-	+	+-	+-	_	_	-	3 70	-
400	870 1130	3132 4068	-	-	-	_	\rightarrow		-	-	-	_	_	-	-	-	_	_	\rightarrow	\rightarrow	-		_	_	-	-	65 67	-		_	-		_	-	-	_	+	_	-	_	_	_	+	68
	1400	5040	-	-	-	_	\rightarrow		-	-	-	-	_	-	-	-	-	_	\rightarrow	\rightarrow	-	_	_	_	-	-	70	$\overline{}$	-	_	-	_	_	-	-	_	_	_	-	_	_	_	-	70
< esta par			_	_	.10	J ₁ U	<u> </u>	<u> </u>		. 100	-104	-10	-100	1,,	- 1	. 100	-10	-10	.01	55	55	00	-50	<u> </u>	101	1,0	ı, U	50		, 0		100	100	100	100	100	1. 7	1,0	1,,	J 1 C	- 1	.1,5	.1,0	1.0

< esta para valores inferiores a 15

¹⁾ ver por ejemplo VDI 2081

Ruido de radiación

Ejemplo

Dados:

Tamaño 160

 \dot{V} = 145 l/s ó 522 m³/h

 $\Delta p_g = 500 Pa$

Presión sonora admisible en el local 35 dB(A) con 4 dB/Oct. de absorción en el local y disposición del regulador según Fig. 1

Se busca: Ruido radiado en el local

1) Valores ver página 9 2) Ver por ejemplo VDI 2081

Cálculo

<u>f</u> _m		63	125	250	500	1k	2k	4k	8k
L _w 1)		73	71	69	65	60	62	56	50
ΔL_1		25	23	20	18	10	9	9	4
Amortiguación por techo	2)	4	4	4	4	4	4	4	4
Amortiguación en el local	2)	4	4	4	4	4	4	4	4
		40	40	41	39	42	45	39	38
Corrección a dB	(A)	-26	-16	- 9	- 3	0	1	1	<u> </u>
Valores corregid	os	14	24	32	36	42	46	40	37

Resultado: L_1 aprox. 49 dB(A) por suma logarítmica, no se cumple la exigencia, por lo que es necesario el aislamiento acústico y el montaje según la fig. 4. Repitiendo el cálculo con ΔL_4 se tiene L_1 aprox. 23 dB(A), con lo que se cumple la exigencia.

Tabla 10: Ruido de radiación

			ΔL _{W1 hasta 5} en dB								ВB	
$L_{w1} = L_w - \Delta L_{1 \text{ hasta 5}}$			f _m en Hz								en e	ta 5
L ₁ = L - ΔL _{A1 hasta 5}	ΔL1 hasta 5	Tamaño	63	125	250	200	1000	2000	4000	8000	ΔL _{A1 hasta 5}	ΔNC _{1 hasta 5}
Fig. 1 Pared Aprox. 6 m RN/RNS Conducto según DIN 24145	ΔL_1	80	37	34	33	22	18	12	12	10	13	11
		100	35	32	31	21	17	12	12	10	13	11
		125	26	30	30	24	22	20	16	12	19	16
		160	25	23	20	18	10	9	9	4	9	8
		200	21	17	15	15	14	11	9	9	9	8
		250	19	15	14	14	13	11	9	9	9	8
		315	17	14	13	14	13	11	9	9	9	8
		400	17	16	9	7	6	4	6	15	5	4
Fig. 2 aprox. 6 m 1 m Silenciador circular Trox Tipo CF050	ΔL_2	80	37	33	31	19	18	13	15	10	14	12
		100	35	31	29	18	17	13	15	10	14	12
		125	27	30	28	22	22	21	19	12	20	17
		160	26	24	19	16	11	11	13	5	11	10
		200	23	18	14	14	15	13	13	10	11	10
		250	21	16	14	13	14	13	13	10	12	11
		315	20	16	13	13	14	14	14	11	12	11
		400	19	15	13	13	13	13	13	11	8	7
Fig. 3 aprox. 6 m 1 m Silenciador circular Trox Tipo CA050	ΔL_3	80	42	38	35	23	21	16	18	13	17	15
		100	40	36	33	22	20	16	18	13	17	15
		125	31	34	32	25	25	24	22	15	23	20
		160	30	27	22	19	13	13	15	7	13	12
		200	26	21	17	16	17	15	15	12	13	12
		250	24	19	16	15	16	15	15	12	13	12
		315	22	18	15	15	16	15	15	12	13	12
		400	20	17	14	14	14	13	13	11	9	8
Fig. 4 aprox. 6 m	ΔL_4	80	44	39	47	47	49	53	58	46	35	37
		100	42	37	45	46	48	53	58	46	35	37
		125	33	35	44	49	53	61	62	48	41	42
		160	32	28	34	43	41	50	55	40	31	34
		200	28	22	29	40	45	52	55	45	31	34
Aislamiento por el cliente		250	26	20	28	39	44	52	55	45	31	34
		315	24	19	27	39	44	52	55	45	31	34
		400	23	17	26	37	41	49	52	41	27	30
Fig. 5 aprox. 6 m	ΔL_5	80	33	30	32	23	22	16	18	12	17	15
RND		100	31	28	30	22	21	16	18	12	17	15
		125	22	26	29	25	26	24	22	14	23	20
		160	21	19	19	19	14	13	15	6	13	12
		200	17	13	14	16	18	15	15	11	13	12
Aislamiento por el cliente Silenciador Tipo RS-A		250	15 13	11	13 12	15 15	17 17	15 15	15 15	11	13	12
Los valores de corrección para conocer el ruido de radiación de los reguladores RN s				10					L		_	12

Los valores de corrección para conocer el ruido de radiación de los reguladores RN son función de muchas variables, como por ejemplo, impulsión o retorno, tipo o forma del conducto, aislamiento del conducto y tipo de techo. Los valores dados se han medido para todos los tamaños y son válidos para una anchura máxima de local de 6 m. Las tolerancias pueden llegar a ser de hasta ± 4 dB.

Información de pedido

Especificación para reguladores serie R

Regulador de caudal de aire circular para sistemas de caudal de aire constante, del tipo automecánico sin aporte de energía exterior, para impulsión o retorno, con gama de diferencia de presión 50 a 1000 Pa, adaptable a conductos según DIN. Compuerta de regulación con membrana actuando como amortiguador neumático, gama de caudales 4:1. Alta exactitud del caudal, con escala situada en el exterior para ajuste y variación del caudal de aire, libre de mantenimiento y funcionamiento independiente de su posición.

Material:

Carcasa de chapa de acero galvanizada, cojinetes de plástico, membrana de poliuretano.

Adicionalmente con:

Protección acústica RND formada por 40 mm de lana mineral y protección exterior de 1 mm de chapa galvanizada para reducción del ruido de radiación.

Servomotor para RN/RND eléctrico 24 VAC, 24 VDC ó 230 VAC para variación del caudal de aire.

Especificación para silenciador, Tipo RS

Silenciador tipo RS para reducir el ruido del flujo de aire para impulsión o retorno, carcasa con aislamiento acústico, resistente a la abrasión hasta velocidades de aproximadamente 20 m/s. Con cuello adaptado a reguladores RN, conexión rectangular adecuada para montaje con perfil de conducto. Estanqueidad de la carcasa según clase A, DIN EN 1751, cumpliendo la clase 3 según VDI 2083, así como la clase 100 según US-Standard 209 b. Alternativamente con conexión circular y compuerta de regulación para conexión directa a varios difusores.

Material:

Carcasa de chapa de acero galvanizada, revestimiento del silenciador con lana mineral resistente a la abrasión con velocidades de hasta 20 m/s no combustible según DIN 4102, clase de material A2.

Código de pedido serie R ver lista de precios RN - A2 - BK 160 B 50 Tipo Actuador 1) 7) 80 RNS 6) Regulador de caudal **Fabricante** 100 Regulador de caudal RN Actuador 125 **RND** Con protección acústica Accesorio 160 200 Material Contramarco Superficie pintada (RAL 7001) 250 00 Sin (ejecución básica) (no en ejecucion con bridas) 315 G2 Contrabrida (en ambos lados) 7) 400 Acero inoxidable A2 D2 Junta de sellado 2) (Ejecución base chapa galvanizada, Tamaño sin indicación) Ejecución 7) 1) Sin servomotor, sin indicación Conexión hembra en un lateral 3) 4) EΑ 2) Para tamaño 80 con adaptador (dimensión L₃) Bridas en ambos lados 4) FL 3) Conexión hembra por el lado opuesto Cuello en ambos lados 4) 5) BK 4) No en tamaño 80 (ejecución base ambos lados de igual diámetro, 5) No en combinación con protección acústica sin indicación) y pintado 6) Solo tamaño 80 a 125. sin protección acústica suministrable sin servomotor

Los reguladores en ejecución base se suministran con una referencia del caudal de aire.

En la ejecución con servomotor se indica el caudal máximo y mínimo. Información de pedido para silenciadores tipo CA, CF y CS están a disposición en el folleto 6/5/SP/...

Ejemplo de pedido

Fabricante: TROX RN - A2 - BK / 160 / 00 / B 50

Código de pedido RS RS - A 160 Tipo Contramarco 100 Silenciador RS 00 Sin (ejecución base) 125 L3 Perfil acoplado a conducto (para ejecución -A) 160 D4 Junta (para ejecución -B) Ejecución 200 Ejecución base 250 Con plenum de distribución B Tamaño Ejemplo de pedido Fabricante: TROX Tipo: RS - A / 160 / 00

Reservado el derecho de modificaciones · Todos los derechos reservados © Gebrüder Trox GmbH (10/2003)

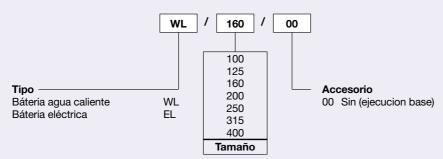
Información de pedido

Especificación baterías de agua caliente, Tipo WL

Batería de dos tubos en fondo para agua caliente hasta 100 °C, para montaje detrás del regulador Serie R, para recalentamiento del aire. Es suministrable por separado y dispone de conexiones circulares en ambos lados adaptados para tubo DIN con junta. Diámetro de conexión R 1/2 ".

Material:

Carcasa de chapa de acero galvanizada, tubos de cobre y lamas de aluminio.


Especificación para batería eléctrica, Tipo EL

Batería suministrable separada para su montaje detrás del regulador de caudal serie R, para recalentamiento del aire, para conexión eléctrica 230 VAC monofásica, protegida contra sobrecalentamiento. Cableada con caja de conexión, con conexiones circulares en ambos lados adaptados para conductos DIN con junta.

Material:

Carcasa de chapa de acero galvanizado, elementos de calefacción de acero inoxidable 1.4541.

Código de pedido batería

Ejemplo de pedido

Fabricante: TROX
Tipo: WL / 160 / 00

Exención de responsabilidad

La venta de materiales y servicios se encuentra sujeta a los términos y condiciones generales de venta estándar de Trox Española, S.A.

La garantía es exclusivamente aplicable a contratos explícitos entre los clientes y la compañía. Los detalles facilitados en este catálogo corresponden únicamente a informaciones generales. Con ellos no se pretende garantizar ninguna propiedad particular de producto o su adecuabilidad para un uso concreto. Se facilita exclusivamente como información general. Estos productos y sistemas intentan mostrar las posibles alternativas de producto. Dichas ilustraciones a su vez muestran productos y sistemas

solicitados bajo demanda por clientes que requieren ejecuciones específicas y son exclusivamente realizados de ese modo como solución al problema planteado por el cliente. Algunos de los productos y sistemas mostrados en este catálogo disponen de accesorios especiales suministrables bajo un cargo adicional.

Los detalles relacionados con el ámbito de suministro, apariencia, funcionamiento, así como alturas y dimensiones son válidos en el momento de edición de este folleto pero pueden estar sujetos a variación en cualquier momento. Todas las ediciones previas de este folleto quedan sustituidas.