

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-13/0340 of 2024/05/27

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011:ETA-Danmark A/S

Trade name of the construction product:

Product family to which the above construction product belongs:

Manufacturer:

Manufacturing plant:

This European Technical Assessment contains:

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

This version replaces:

Rockpanel A2 finish Colours (9 mm), Rockpanel A2 finish Structures (9 mm) and Rockpanel A2 finish ProtectPlus (9 mm)

Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system

ROCKWOOL B.V.
Konstruktieweg 2
NL-6045 JD Roermond
Tel. +31 475 353 000
Fax +31 475 353 550
ROCKWOOL B.V. / Rockpanel
Konstruktieweg 2
NL-6045 JD Roermond

17 pages including 4 annexes which form an integral part of the document

European Assessment Document (EAD) no. EAD 090001-00-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system

The previous ETA with the same number issued on 2019-11-19

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

General

Rockpanel A2 finish Colours, Rockpanel A2 finish Structures and Rockpanel A2 finish ProtectPlus are prefabricated compressed mineral wool panels with thermo-hardening synthetic binders. The boards are fastened to timber, aluminium or steel subframes. Fastening to the timber subframe is carried out with corrosion resistant screws. Fastening to the aluminium or steel subframe is carried out with corrosion resistant rivets or self-drilling screws.

Mechanical fasteners, gaskets, aluminium and steel profiles are specified by the ETA-holder.

The Rockpanel A2 Colours panels are surface treated on one side with water-borne primer- and water-borne coloured paint layers, in a range of colours.

The Rockpanel A2 Structures panels are surface treated on one side with water-borne primer- and water-borne coloured paint layers, in a limited range of colours.

The Rockpanel A2 ProtectPlus panels are surface treated on one side with water-borne primer- and water-borne coloured paint layers, which have been provided with an extra anti-graffiti clear coat on the colour paint. The finishes "Woods", "Stones", "Chameleon" and "Textured" contain an additional design layer on top of the coloured paint.

The physical properties of the panels are indicated in Table 1.

Table 1:

Tubic 1.	
Property	Value
Thickness, nominal	9 mm
Length, max	3050 mm
Width, max	1250 mm
Density, nominal	1250 kg/m^3
Bending strength, length and width	$f_{05} \ge 25.5 \text{ N/mm}^2$
Modulus of elasticity	$m(E) \ge 4740 \text{ N/mm}^2$
Thermal conductivity EN 10456	0.55 W/(m*K)
Cumulative dimensional	Length: 0.064
change %	Width: 0.064
Coefficient of thermal expansion, length and width	$\alpha = 9.7 (10^{-6} {}^{\circ}\text{K}^{-1})$
Coefficient of moisture expansion 23°C/50% RH to 92% RH, length and width	0.206 mm/m after 4 days

Finishes

The finishes are indicated in Table 2. The coatings are provided in a number of colours.

Table 2:

Rockpanel A2	Colour coating in a range
Colours:	of colours
(water-borne polymer	
emulsion paint)	
Rockpanel A2	Colour coating RAL 7005,
Structures:	7016, 7021, 7024, 7035
(water-borne polymer	and 9010
emulsion paint)	
Rockpanel A2	Clear coat pure or Clear
ProtectPlus	coat with wood design
(water-borne polymer	"Woods" e.g. Teak, Alder
emulsion paint with	etc. or Clear coat with
anti-graffiti clear coat)	design "Textured" e.g.
	Carrara White, Sapphire
	Blue etc. or Clear coat
	with stone design "Stones"
	e.g. Mineral Chalk, Basalt
	Anthracite etc. or with
	metallic particles "Metals"
	e.g. Aluminium, Brass etc.
	and clear coat with design
	"Chameleon"

The colour fastness of the panels is indicated in Table 3.

Table 3:

Table 5.						
Property	Value (ISO 105 A02)					
Colour fastness after	Rockpanel A2 Colours:					
5000 hours artificial	3-4 or better					
weathering	Rockpanel A2 Structures:					
(TR010 climate class S)	3-4 or better					
	Rockpanel A2					
	ProtectPlus: 4 or better					

Subframes

The panels are attached to the building by fixing to a subframe of aluminium, steel or wood.

The minimum thickness of the vertical aluminium profiles is 1.5 mm (rivets) or 1.8 mm (self-drilling screws). The aluminium is AW-6060 according to EN 755-2. The $R_m/R_{p0.2}$ value is $\geq 170/140$ for profile T6 and $\geq 195/150$ for profile T66.

The minimum thickness of the vertical steel profiles is either 1.0 mm [a] (steel quality is S320GD +Z EN 10346 number 1.0250, or equivalent for cold forming), or 1.5 mm [a] (steel quality EN 10025-2:2004 S235JR number 1.0038).

[a] The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment. The International Zinc association can be consulted for more information. The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner. Alternatively, a hot dip galvanized coating according to EN ISO 1461 can be used.

The vertical timber battens should have a minimum thickness of 28 mm (solid wood). Also LVL battens (Laminated Veneer Lumber) with a minimum thickness of 27 mm, according to EN 14374, can be used (Ultralam R, CE 0672-CPD-I).

Appropriate preservative treatment of subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required select an appropriate level of durability and ensure that the timber or woodbased product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

In the event vertical profiles cannot be applied, horizontal profiles can be used carried out with ventilated cavities e.g. by a double crossed subconstruction.

Joints

Horizontal joints on metal sub-constructions

The horizontal joints between the panels can be open in case of steel supports or aluminium rail supports.

Horizontal joints on timber sub-constructions

In case of open horizontal joints an EPDM foam gasket must be applied on the vertical battens with a width 15 mm at both sides wider than the batten.

The horizontal joints between the panels are made with a Rockpanel "A" extruded aluminium chair profile or equivalent in case of closed joints for panels mechanically fixed on timber battens. The chair profile has an overlap of at least 15 mm on the board above the profile. (See annex 1, figure 1a). In case of a closed joint an EPDM foam gasket is fixed to the timber battens.

Fasteners

The panels are mechanically fixed to a vertical timber, aluminium or steel subframe. The mechanical fastening to timber battens is carried out with Rockpanel stainless steel screws 4.5 x 35 mm no. 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels.

Fastening to aluminium is carried out with EN AW-5019 (AIMg5) rivets, head diameter 14 mm, body diameter 5 mm, head colour coated or with an austenitic

stainless steel (A4 in accordance with EN ISO 3506) self-drilling screw, head diameter 15 mm, body diameter 5.8 mm, head colour coated.

Fastening to the steel subframe is carried out with either EN 10088 (no. 1.4578) rivets, head diameter 15 mm, body diameter 5 mm, head colour coated, or EN 10088 (no. 1.4567) rivets, head diameter 14 mm, body diameter 5 mm, head colour coated or a stainless steel EN 10088 (no. 1.4404) self-drilling screw, head diameter 12 mm, body diameter 4.3 mm, head colour coated. The screw is available in 5.5 x 25 for a clamping thickness up to 9 mm, or 5.5 x 35 mm for a clamping thickness up to 19 mm.

For correct fixing, a riveting tool with rivet spacer must be used, see Table 5 and Table 7 of the ETA.

The maximum fixing distances and hole diameter, appear from Tables 8 and 9 of the ETA.

The installation method with the use of fixed points and moving points appears from Annex 3, Table 8 and Figure 2 of the ETA.

Design value of the axial load appears from Annex 3, Table 7 and Table 10, 10-1, 10-2 and 10-3 of the ETA.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The boards are intended for external cladding and for fascias and soffits. The cladding on vertical timber battens, aluminium or steel subframe with mechanically fixed boards shall be carried out with ventilated cavities at the back. See Annex 1.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years.

In addition, for aluminium support systems intended to be used for facades:

In some member states national climate conditions may reduce the service life of the aluminium support system to 35 years or more.

An additional assessment of the aluminium support system might be necessary to comply with Member State regulations or administrative provisions.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product and references to the methods used for its assessment

3.2 Safety in case of fire (BWR 2)

Characteristic

Reaction to fire The aluminium profiles are classified as Euroclass A1

Classification of panels: See Table 4

Assessment of characteristic

3.3 Hygiene, health and the environment (BWR 3)

Formaldehyde concentration 0.0105 mg/m³ Formaldehyde class E1 Dangerous substances

> The used fibres are not potential carcinogenic No biocides are used in the Rockpanel boards No flame retardant is used in the boards No cadmium is used in the boards.

Water vapour permeability No Performance Assessed

Water permeability incl. joints for non-

ventilated applications

No Performance Assessed

Drainability **Drainable**

Safety and accessibility in use (BWR 4) 3.4

The following concerns performances for wind load resistance and mechanical resistance including pull-out and pull-through resistance of fasteners and mechanical resistance of boards, wind suction and pressure resistance and shear resistance of mechanical fixing. Pull-off resistance and mechanical resistance of the board for glued kits, initial and shear properties of bonded kits are not relevant

In absence of national regulations the design values X_d may be calculated as indicated in the ETA (see Table 10, 10-1, 10-2 and 10-3). Below the safety factors are listed which have been used in the calculation of the design values.

Design	values	of	axial	loads	

Design value X_d obtained by dividing the characteristic value X_k by a partial factor

 $\gamma_{\rm M}: X_d = X_k/\gamma_{\rm M}$

The design value X_d of a material property can be expressed in general terms as

 $X_d = \eta * X_k / \gamma_M$

For Rockpanel $\gamma_m = 1.6$. The conversion factor $\eta = 0.8$ [aged bending strength] divided by the f_{05} .

As a result $\gamma_{\rm M} = 2.0$

Rivets aluminium or stainless steel

To an aluminium subframe, design value X_d : 468/304/200 N Annex 3 Table 10 row (16).

Self-drilling screw for aluminium:

To an aluminium subframe, design value X_d : 371/162/136 N Annex 3 Table 10-1 row (16).

Self-drilling screw for steel:

To a steel subframe, design value X_d : 407/174/72 N Annex 3 Table 10-2 row (16).

Rockpanel screw for timber:

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different materials factors y_M.

Boards to a solid timber subframe: see Annex 3 Table 10-3 row (25)(26).

Characteristic shear strength

Average values

Rivet fixings

Failure load: 2390 N, Deformation: 3.2 mm

Self-drilling screw for aluminium:

Failure load: 2129 N, Deformation: 4.0 mm

Self-drilling screw for steel:

Failure load: 1912 N, Deformation: 4.0 mm

Torx screw fixing on timber

Failure load: 2283 N, Deformation: 9.0 mm

^{*)} In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

Characteristic	Assessment of characteristic
Wind load resistance (M/E/C)	
Average strength N For the locations see Table 7	Rivets aluminium or stainless steel: 2267 / 900 / 439 (according to Annex 3 Table 10)
	Self-drilling screw for aluminium: 2094 / 791 / 531 (according to Annex 3 Table 10-1)
	Self-drilling screw for steel: 2215 / 1001 / 610 (according to Annex 3 Table 10-2)
	Rockpanel screws for timber: 1732 / 744 / 386 (according to Annex 3 Table 10-3)
Average failure load N/m ² For the locations see Table 7	Rivets aluminium or stainless steel: 4030 / 3750 / 3918 (according to Annex 3 Table 10)
	Maximum deformations in de wind load tests: 28 / 26 / 27 Kit failure due to failure of the boards.
	Self-drilling screw for aluminium: 3851 / 3293 / 4741 (according to Annex 3 Table 10-1)
	Maximum deformations in de wind load tests: 25 / 22 / 28 Kit failure due to failure of the boards.
	Self-drilling screw for steel: 4073 / 4169 / 5443
	(according to Annex 3 Table 10-2) Maximum deformations in de wind load tests: 27 / 27 / 29 Kit failure due to failure of the boards.
	Rockpanel screws for timber: 3158 / 3098 / 3444
	(according to Annex 3 Table 10-3) Maximum deformations in de wind load tests: 16 / 21 / 21 Kit failure due to failure of the boards.
Impact resistance	Panels without a horizontal joint:

Impact resistance	Panels without a horizontal joint: Rockpanel A2 9 mm finish Colours or finish Structures or finish ProtectPlus: classified category II according EAD 090062-00-0404
	Panels with a horizontal joint: Rockpanel A2 9 mm finish Colours or finish Structures or finish ProtectPlus: classified category III according EAD 090062-00-0404
	See Annex 4 Table 11 for the definition of use category
Mechanical resistance	See section 1, Table 1

3.8 Aspects of durability

Resistance to Hygrothermal cycles	Pass
Dimensional stability	See Table 6
Immersion in water without UV	Not relevant
Humidity and NaCl	Not relevant
Humidity and SO2	Not relevant
Resistance to Xenon Arc exposure	Pass

Reaction to fire

Table 4. Euroclass classification of construction with Rockpanel A2 finish Colours, Rockpanel A2 finish Structures and Rockpanel A2 finish ProtectPlus

Fixing method	Ventilated or non-ventilated	Vertical aluminium or steel profiles	Vertical wooden subframe
	Ventilated	A2-s1,d0 open 6 mm horizontal joint	
Mechanically fixed	Ventilated, plank application width ≥ 100 mm, with 9 mm windboard in front of insulation.		
	Ventilated, with EPDM gasket on the battens		A2-s2,d0 open 6 mm horizontal joint

Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

Euroclass classification

The classification mentioned in Table 4 is valid for the following end use conditions:

Mounting:

- Mechanically fixed to a wooden or metal subframe
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation
- The windboard mentioned in Table 4 is specified minimum A2 (according EN 13501-1) and K₁10 (according EN 13501-2) and placed between the subframe and the insulation.

Substrates:

• Concrete walls, masonry walls, timber framing and a wall made of metal frame e.g. LWSF.

Insulation:

- Ventilated constructions: The subframe is backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of minimal 20 mm for metal subframes and 28 mm for timber subframes between the panels and the insulation
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification
- Results are also valid for the panels without insulation, if the substrate chosen according to EN 13238 is made of panel with Euro-class A1 or A2 (e.g. fibre-cement panels).

Subframe:

- Vertical softwood battens without fire retardant treatment, thickness minimum 28 mm
- Test results are also valid for the same type of panel with a metal subframe
- Test results are also valid for the same type of panel with vertical LVL battens, without fire retardant treatment, thickness minimum 27 mm

Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

Cavity:

- Unfilled
- The depth of the cavity is minimum 20 mm for a metal subframe, and 28 mm for a timber subframe
- Test results are also valid for other higher thickness of air space between the back of the board and the insulation behind the subframe

Joints:

- Horizontal joints can be open or closed with an aluminium profile. For metal subframes the vertical joints are without a gasket backing. For timber subframes the vertical battens are with an EPDM foam gasket (3 mm non compressive thickness)
- The result from a test with an open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminium profiles
- Max joint width: 8 mm

The classification is also valid for the following product parameters:

Thickness:

• Nominal 9 mm

Density

Nominal 1250 kg/m³

Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V.

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which describes the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / Rockpanel in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On every pallet label and/or on the protective film of every board the website is printed which guides the end user to the most actual information.

The boards are in general mounted with a joint width of between 5 and 8 mm.

If the joints are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The panels should not be taken into account when designing a timber stud wall to resist racking forces.

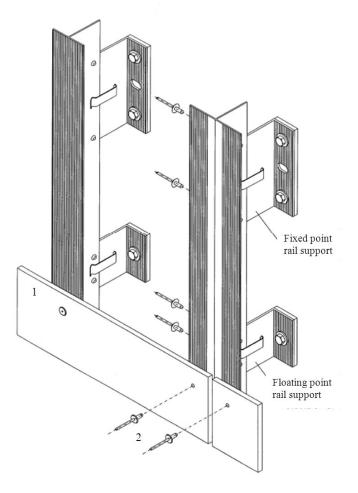
The holes for the fixings are drilled into the panels not less than 15 mm (on timber subframe) and 20 mm (on metal subframe) from a vertical edge and 50 mm from a horizontal edge. The panels are fixed making sure that the screws are not over-tightened. For correct fixing, a riveting tool with rivet spacer must be used. For correct fixing of the self-drilling screw on aluminium a center sleeve should be used.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 AVCP system

According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2024-05-27 by

Thomas Bruun Managing Director, ETA-Danmark

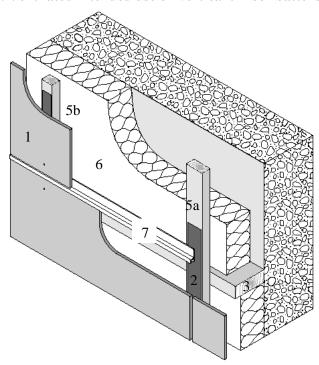
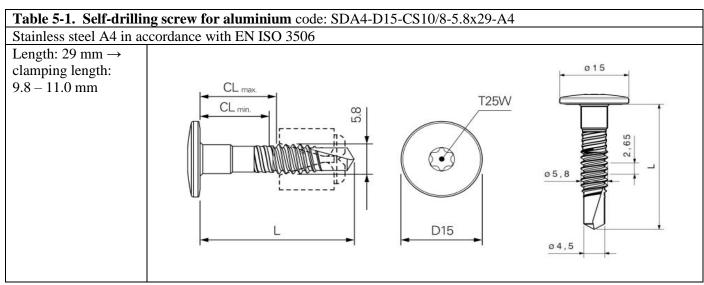

Annex 1 Pre-fabricated compressed mineral wool boards with organic or inorganic finish

Figure 1. Ventilated intended use on vertical metal subframe

- 1. Compressed mineral wool board with organic or inorganic finish
- 2. Rivet fixing or self-drilling screw fixing

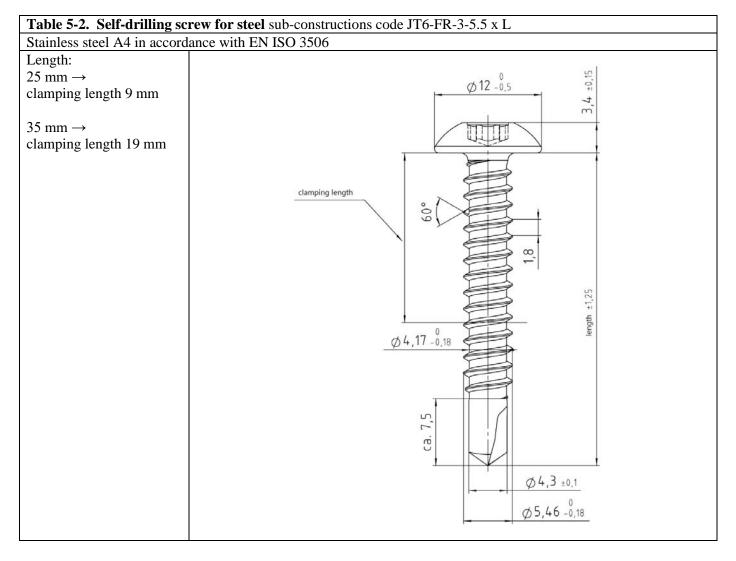
Figure 1a. Ventilated intended use on vertical timber battens

- 1. Compressed mineral wool board with organic or inorganic finish
- 2. EPDM foam gasket
- 3. Timber beam
- 4. Vapour barrier
- 5. Batten: a- joint and b intermediate
- 6. Insulation
- 7. Rockpanel "A" extruded aluminium chair-profile or equivalent.

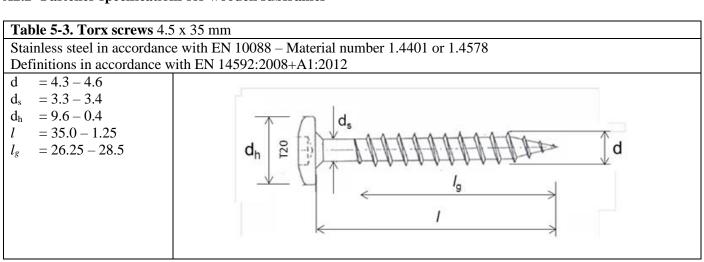

Annex 2 Fastener specification

A2.1 Fastener specification for metal sub-frames

Table 5. Rivet alum	Table 5. Rivet aluminium or stainless steel							
		SFS	SFS	MBE	MBE			
		Aluminium	Stainless steel A4	Aluminium	Stainless steel			
0	Code	AP14-50180-S	SSO-D15-50180	1290406	FN-A4-5x18 K15			
1 2 4 4 4	Body	Aluminium EN	Stainless steel	Aluminium EN	Stainless steel			
		AW-5019	material number	AW-5019	material number			
		(AIMg5) in	1.4578 in	(AIMg5) in	1.4578 in			
d ³		accordance with	accordance with	accordance with	accordance with			
		EN 755-2	EN 10088	EN 755-2	EN 10088			
	Mandrel	Stainless steel	Stainless steel	Stainless steel	Stainless steel			
		material number	material number	material number	material number			
		1.4541 in	1.4571 in	1.4541 in	1.4571 in			
104 ×1 .		accordance with	accordance with	accordance with	accordance with			
		EN 10088	EN 10088	EN 10088	EN 10088			
111	Pull-out	$F_{\text{mean},n} = 2038$	$F_{\text{mean},n} = 1428$	$F_{\text{mean},10}=2318$	$F_{\text{mean},n} = 1428$			
	strength	s = 95	s = 54	s = 85	s = 54			
		$F_{u,5} = 1882$	$F_{u,5} = 1339$	$F_{u,5} = 2155$	$F_{u,5} = 1339$			
	d^1	5	5	5	5			
V	d^2	14	15	14	15			
	d^3	2.7	3.25	2.7	3.25			
	1	18	18	18	18			
d1	k	1.5	1.5	1.5	1.5			
	Profile	Aluminium	Steel	Aluminium	Steel			
		$t \ge 1.5 \text{ mm}$	$t \ge 1.0 \text{ mm}$	$t \ge 1.8 \text{ mm}$	$t \ge 1.0 \text{ mm}$			
			[a] [b]		[a] [b]			


[[]a]: The minimum thickness of the vertical steel profiles is 1.0 mm. The steel quality is S320GD +Z EN 10346 number 1.0250 (or equivalent for cold forming). For minimum coating thickness see [c]

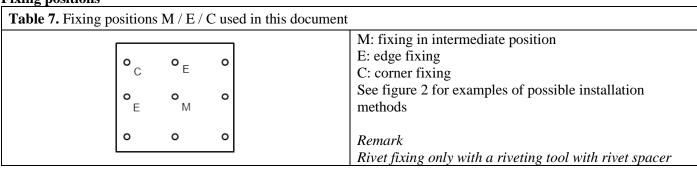
[[]c]: The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment. The International Zinc association can be consulted for more information. The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner. Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

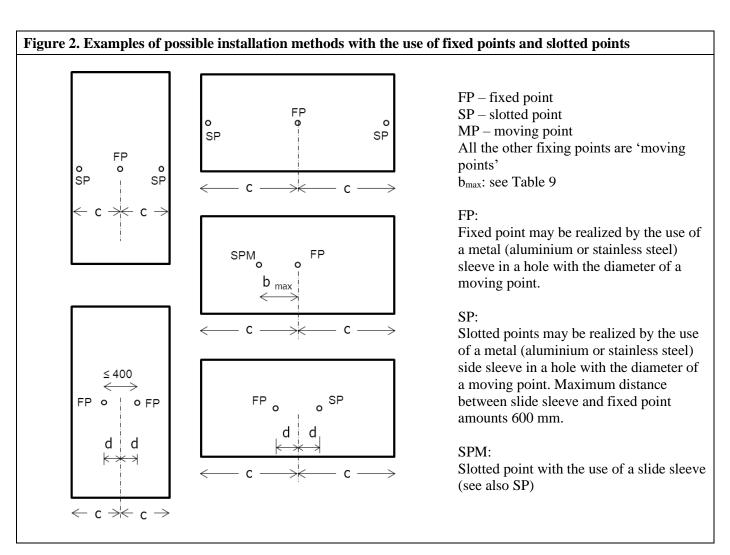


[a]: The minimum thickness of the aluminium profiles is 1.8 mm.

[[]b]: The minimum thickness of the vertical steel profiles is 1.5 mm. The steel quality is EN 10025-2:2004 S235JR number 1.0038. For minimum coating thickness see [c]

A2.2 Fastener specifications for wooden subframes




Annex 3 Performance

Dimensional stability

Table 6. Deformation Rockpanel A2 in accordance with EN 438-2						
	Rockpanel A2					
characteristic	Length of the board	Width of the board				
deformation	0.061 %	0.066 %				
dry heat 23°C / 50% to 23°C / 0% (mm/m)	-0.240	-0.290				
coefficient of thermal expansion (10 ⁻⁶ °K ⁻¹)	9.7	9.7				
coefficient of moisture expansion 42% change RH	0.204	0.207				
(mm/m) 50% to 92% RH after 4 days						

Fixing positions

Annex 3 continued

Table 8.	Table 8. Hole diameters mm							
o	0	0			Rivet	Self-drilling screw for aluminium	Self-drilling screw for steel	Torx screw for timber
0	F			F – Fixed point	5.1	5.8	4.3	3.2
s	Ü	s	a	S – Slotted holes	5.1 x 8.0	N.A.	4.3 x 8.0	3.4 x 6.0
0	0	0	a_{2}	Moving points – all the other	8.0	10.0 (with the use of	8.0	6.0
$ $ \rightarrow $ $	b			positions		a centering sleeve)		

Table 9. Minimum edge distances and maximum distances between fastenings in mm							
$egin{array}{ c c c c c c c c c c c c c c c c c c c$							
Rivet	600	600	≥ 20	≥ 50			
Self-drilling screw for metal	600	600	≥ 20	≥ 50			
Torx screw on timber	600	600	≥ 15	≥ 50			

Table 10. Characteristic axial load X_k and design value of the a	axial load $X_d = X$	$\gamma_k/\gamma_{\rm M}$ for the co	mbination rive	t and	
9 mm Rockpanel A2 boards [a]					
Board thickness	9 mm			(1)	
Location of the fixing in the board	M-middle	E-edge	C-corner	(2)	
Pull-through N				(3)	
Characteristic pull-through N	935	608	400	(4)	
Material factor Rockpanel $\gamma_{\rm M}$	2.0	2.0	2.0	(5)	
Design value X_d of the pull-through N	468	304	200	(6)	
Wind suction				(7)	
Average wind load in N/m ²	4030	3750	3918	(8)	
Average strength N	2267	900	439	(9)	
Material factor Rockpanel γ _M	2.0	2.0	2.0	(10)	
Design value X_d of the pull-through N	1134	450	220	(11)	
Pull-out strength (lowest value of rivet/subframe combination)			(12)		
Pull-out F _{u,5} N	≥ 1300	≥ 1300	≥ 1300	(13)	
Material factor aluminium $\gamma_{\rm M}$	1.25	1.25	1.25	(14)	
Design value X_d of the pull-out N	1040	1040	1040	(15)	
Design value of the axial load $X_d = X_k / \gamma_M$ for the combination rivet and 9 mm boards	468	304	200	(16)	
Board span b 600				(17)	
Fixing distance a 600			(18)		

[[]a]: For correct fixing, a riveting tool with rivet spacer must be used; [b]: Calculation according EAD 090062-00-0404 annex D: $F_{u,5} = F_{mean} - 1.64s$

Table 10-1. Characteristic axial load X_k and design value o	f the axial load $X_d =$	$X_k/\gamma_{\rm M}$ for the	combination se	elf-
drilling screw on aluminium and 9 mm Rockpanel A2 bo	ards [a]	•		
Board thickness		9 mm		
Location of the fixing in the board	M-middle	E-edge	C-corner	(2)
Pull-through N				(3)
Characteristic pull-through N	741	324	271	(4)
Material factor Rockpanel $\gamma_{\rm M}$	2.0	2.0	2.0	(5)
Design value X_d of the pull-through N	371	162	136	(6)
Wind suction				(7)
Average wind load in N/m ²	3851	3293	4741	(8)
Average strength N	2094	791	531	(9)
Material factor Rockpanel $\gamma_{\rm M}$	2.0	2.0	2.0	(10)
Design value X_d of the pull-through N	1047	395	266	(11)
Pull-out strength (lowest value of screw/subframe combination)				(12)
Pull-out F _{u,5} N	≥ 1410	≥ 1410	≥ 1410	(13)
Material factor aluminium $\gamma_{\rm M}$	1.25	1.25	1.25	(14)
Design value X_d of the pull-out N	1128	1128	1128	(15)
Design value of the axial load $X_d = X_k / \gamma_M$ for the combination self-drilling screw and 9 mm boards	371	162	136	(16)
Board span b		600		
Fixing distance a		600		

Fixing distance a
[a]: For correct fixing, the SFS center sleeves must be used.

Table 10-2. Characteristic axial load X_k and design value of	of the axial load $X_d =$	$X_k/\gamma_{\rm M}$ for the	combination se	elf-	
drilling screw on steel and 9 mm Rockpanel A2 boards					
Board thickness		9 mm			
Location of the fixing in the board	M-middle	E-edge	C-corner	(2)	
Pull-through N				(3)	
Characteristic pull-through N	814	347	145	(4)	
Material factor Rockpanel $\gamma_{\rm M}$	2.0	2.0	2.0	(5)	
Design value X_d of the pull-through N	407	174	72	(6)	
Wind suction				(7)	
Average wind load in N/m ²	4073	4169	5443	(8)	
Average strength N	2215	1001	610	(9)	
Material factor Rockpanel $\gamma_{\rm M}$	2.0	2.0	2.0	(10)	
Design value X_d of the pull-through N	1107	500	305	(11)	
Pull-out strength (lowest value of screw/subframe combination)				(12)	
Pull-out F _{u,5} N	≥ 1100	≥ 1100	≥ 1100	(13)	
Material factor steel $\gamma_{\rm M}$	1.3	1.3	1.3	(14)	
Design value X_d of the pull-out N	846	846	846	(15)	
Design value of the axial load $X_1 - X_1 / y_0$ for the		174	72	(16)	
combination self-drilling screw and 9 mm boards	407	174	72	(16)	
Board span b 600			(17)		
Fixing distance a 600				(18)	

Table 10-3. Characteristic axial load	X_k and C	lesign value of the	he axial load X_d	$= X_k / \gamma_{\rm M}$ for the	combination so	lid
timber, Torx Screw and 9 mm Rock	kpanel A	2 boards (with the	ne use of gaskets	s), with $\alpha \ge 30^{\circ}$	[c]	
Board thickness				9 mm		(1)
Location of the fixing in the board	ocation of the fixing in the board			E-edge	C-corner	(2)
Pull-through N						(3)
Characteristic pull-through	Characteristic pull-through N			714	483	(4)
	Material factor Rockpanel γ _M			2.0	2.0	(5)
Design value X_d of the pu	ll-throug	h N	591	357	242	(6)
Wind suction						(7)
Average wind load in N/r	n^2		3158	3098	3444	(8)
Average strength N				744	386	(9)
Material factor Rockpane	1 γ _M		2.0	2.0	2.0	(10)
Design value X_d of the pu	Design value X_d of the pull-through N			372	193	(11)
Withdrawal capacity (gasket thickness 0				(12)		
Characteristic withdrawal capacity $F_{ax,k,Rk}$ [b] [c] [d]						(13)
Strength class wood	C18	$\rho_k = 320 \text{ kg/m}^3$	777	777	777	(14)
(EN 338)	C24	$\boldsymbol{\rho}_{k} = 350 \text{ kg/m}^{3}$	835	835	835	(15)
Modification factor for k_{mod}			k _{mod} [a]			(16)
Axial withdrawal capacity $F_{ax,k,Rk} * k_{mod}$ [a] [b] [c] [d			.]			(17)
Strength class wood	C18	$\boldsymbol{\rho}_{k} = 320 \text{ kg/m}^{3}$	$777 * k_{mod}$	$777 * k_{mod}$	$777 * k_{mod}$	(18)
(EN 338)	C24	$\boldsymbol{\rho}_{k} = 350 \text{ kg/m}^{3}$	835 * k _{mod}	835 * k _{mod}	835 * k _{mod}	(19)
Material factor (NA to) EN 1995-1-1+C1+A1/A2:2014			$\gamma_{\rm M} = 1.30$ [withdrawal capacity]			(20)
Design value X_d of the axial withdrawal capacity N			1			(21)
Strength class wood	C18	$\rho_k = 320 \text{ kg/m}^3$	597 * k _{mod}	597 * k _{mod}	$597 * k_{mod}$	(22)
(EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	642 * k _{mod}	642 * k _{mod}	$642 * k_{mod}$	(23)
Design value of the axial load $X_d = X_k / \gamma_M N$		minimum value of the rows:			(24)	
Strength class wood	C18	$\boldsymbol{\rho}_{k} = 320 \text{ kg/m}^{3}$	(6) (11) (22)	(6) (11) (22)	(6) (11) (22)	(25)
(EN 388)	C24	$\boldsymbol{\rho}_{k} = 350 \text{ kg/m}^{3}$	(6) (11) (23)	(6) (11) (23)	(6) (11) (23)	(26)
Board span b			600			(27)
Fixing distance a			600			(28)

[[]a]: modification factor k_{mod} depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1.

[[]b]: with reduced thread diameter to fulfil the minimum l_{ef} demand (d = l_{ef} / 6-0.001 = 23.75 / 6 - 0.001 = 3.957 mm).

[[]c]: α is the angle between the screw axis and the wood grain direction: $\alpha\!\geq\!30^\circ.$

[[]d]: calculation in accordance with EN 1995-1-1+C1+A1/A2:2014 formula (8.38), (8.39) and (8.40)

Annex 4

Impact resistance

Table 11. Impact resistance: Definition of use categories				
Use category	Description			
I	A zone readily accessible at ground level to the public and vulnerable to hard body impacts			
	but not subjected to abnormally rough use.			
II	A zone liable to impacts from thrown or kicked objects, but in public locations where the			
	height of the kit will limit the size of the impact; or at lower levels where access to the			
	building is primarily to those with some incentive to exercise care.			
III	A zone not likely to be damaged by normal impacts caused by people or by thrown or			
	kicked objects.			
IV	A zone out of reach from ground level			

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit.