ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration Programme holder Publisher Declaration number ECO EPD Ref. No. Issue date Valid to Knauf Insulation Institut Bauen und Umwelt e.V. (IBU) Institut Bauen und Umwelt e.V. (IBU) EPD-KNI-20160224-CBD2-EN ECO-00000470 13.12.2016 12.12.2021

SmartRoof Base / SmartRoof Thermal Rock Mineral Wool for Flat Roofs

Knauf Insulation

www.ibu-epd.com / https://epd-online.com

General Information

Knauf Insulation

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-KNI-20160224-CBD2-EN

This Declaration is based on the Product Category Rules:

Mineral insulating materials, 07.2014 (PCR tested and approved by the SVR)

Issue date

13.12.2016

Valid to 12.12.2021

Whennames

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

MINNA

Dr. Burkhart Lehmann (Managing Director IBU)

Product

Product description

Knauf Insulation manufactures Rock Mineral Wool (RMW) insulation products. They are available as lamellas, slabs or boards, and also possibly rolls. The density range for rock mineral wool goes from 25 to 200 kg/m³. In terms of composition, inorganic rocks are the main components (typically 97%) of stone wool, with a remaining fraction of organic content which is generally a thermosetting resin binder. The binder content is typically less than 4%. The inorganic part is made of volcanic rocks, typically basalt, also dolomite and with an increasing proportion of recycled material in form of slags or briquettes, a mix of stone wool scrap and cement.

Rock mineral wool SmartRoof Base and SmartRoof Thermal are used as a thermal, acoustical and fire insulation product. This EPD has been developed for the most common product sold on the appropriate market.

For the placing on the market in the European Union/EFTA (with the exception of Switzerland), the Regulation /(EU) No 305/2011/ applies. The products need Declaration of performances, DoPs: R4224KPCPR/ R4224LPCPR/ R4238KPCPR/ R4308KPCPR/ R4308LPCPR/ R4309KPCPR/

SmartRoof Base / SmartRoof Thermal

Owner of the Declaration

Knauf Insulation rue de Maestricht 95 4600 Visé Belgium

Declared product / Declared unit

1 m³ of product

Scope:

The declared unit is 1 m³ SmartRoof Base / SmartRoof Thermal Rock Mineral Wool products for flat roofs. They comply with the requirements of /EN 13162/. The thickness ranges from 40 mm to 200 mm. The manufacturing company is Knauf Insulation plants Surdulica (Serbia), Skofja Loka (Slovenia) and Nova Bana (Slovakia) - with averages following production share. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

Matthias Schulz

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration according to /ISO 14025/

externally

internally

(Independent verifier appointed by SVR)

R4309LPCPR/ taking into consideration the harmonized product standard /EN 13162:2012 + A1:2015 - Thermal insulation products for buildings - Factory made mineral wool (MW) products - Specification/ and the /CE-mark/.

Application

Main applications for the RMW concerned products are thermal and sound insulation of roofs. For the application and use national regulations apply, in Germany the /*Allgemeine bauaufsichtliche Zulassung Z-23.15-1475/ (building inspection approval) issued by the Deutsches Institut für Bautechnik (DIBt), Berlin.*

Technical Data

The products and their technical characteristics meet a number of technical requirements. The most important ones are summarized in the table here below, which also includes references to testing methods.

Technical characteristics

Name	Value	Unit
Thermal conductivity SmartRoof Thermal /EN 13162/	0.036	W/(mK)
Thermal conductivity SmartRoof Base / EN 13162/	0.035	W/(mK)

Water vapour diffusion resistance factor /SIST EN 13162/	1	-
Water vapor diffusion equivalent air layer thickness /SIST EN 13162/	1	m
Sound absorption coefficient	NA	%
Gross density /DIN 1602/	95 - 115	kg/m ³
Reaction to fire /EN 13501-1/	A1	-
Specific heat capacity /EN ISO 10456/	1030	J/kgK
Melting point /DIN 4102 / T17/	>= 1000	°C
Compressive strength SmartRoof Thermal /DIN EN 826/	50	kPa
Compressive strength SmartRoof Base /DIN EN 826/	30	kPa
Tension SmartRoof Thermal /DIN EN 1607/	10	kPa
Tension SmartRoof Base /DIN EN 1607/	7.5	kPa
Point load SmartRoof Thermal /DIN EN 12430	500	Ν
Point load SmartRoof Base /DIN EN 12430	300	Ν

LCA: Calculation rules

Declared Unit

The declared unit is 1 m³ of rock mineral wool. The density used for the calculation of the LCA is 105 kg/m³.

Declared unit

Name	Value	Unit
Declared unit	1	m ³
Gross density	105	kg/m ³
Conversion factor to 1 kg	0.0095	-

System boundary

The system boundary of the EPD follows the modular approach defined by /EN 15804/.

The type of EPD is cradle-to-gate-with options.

List and explanation of the modules declared in the EPD.

The product stage (A1-A3) includes:

- A1 - raw material extraction and processing, processing of secondary material input (e.g. recycling processes),

- A2 transport to the manufacturer
- A3 manufacturing.

This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage. The LCA results are given in an aggregated form for the product stage, meaning that the modules A1, A2 and A3 are considered as **a unique module A1-A3**.

The construction process stage includes:

A4 - transport to the construction site and
A5 - installation into the building.

The transport to the building site (A4) is included in the LCA calculation. For the considered product, the average transport distance is assumed to be 500 km with a truck capacity utilization of 40%.

Module A5 has been included in this EPD. Therefore, the treatment of the packaging waste after the

Base materials / Ancillary materials

The main raw materials are diabase (a rock that is similar to volcanic rock basalt), dolomite and briquette. The briquette is made of rock mineral wool waste (internal or external), waste of raw materials and cement. Additionally, coke is also added in the cupola as an energy carrier. Further down the manufacturing line, a binder (thermo set resin) is spread onto the fibers. Then, the polymerization contributes to fix the products dimensions and mechanical properties.

Reference service life

When used correctly, the reference service life of Knauf Insulation rock mineral wool is merely limited by the service life of the components and/or building in which it is incorporated; this is substantiated by current industry findings, for example in case of deconstruction of buildings. As a minimum, we consider a reference service life of 50 years.

installation of the product has been considered and the loss on construction site (2%).

The use stage

Because they are specific to the building, its use and location, none of the modules related to the building fabric (B1-B5) nor the operation of the building (B6 and B7) have been taken into account in this EPD.

The end-of-life stage includes:

- C1 de-construction, demolition,
- C2 transport to waste processing,

- C3 - waste processing for reuse, recovery and/or recycling and

C4 - disposal.

This includes provision of all transports, materials, products and related energy and water use, but only modules C2 and C4 are reported, as they are considered the most relevant scenarios for rock mineral wool products.

Although rock mineral wool products from Knauf Insulation are partly recycled at end-of-life, there is not yet an established collection system, and as such, the assumption chosen in this study,100% landfilled after the use phase, is the most conservative approach.

Module D includes reuse, recovery and/or recycling potentials.

According to /EN 15804/, any declared benefits and loads from net flows leaving the product system not allocated as co-products and having passed the endof-waste state shall be included in module D. Benefits and loads are considered (incineration of packagings) in module D and are included in the background model.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific

characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The following information forms the basis for declared modules or can be used for specific scenarios development in building assessment context.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	0.0025	l/100km
Transport distance	500	km
Capacity utilisation (including empty runs)	40	%
Gross density of products transported	105	kg/m³

Installation into the building (A5)

Name	Value	Unit
Output substances following waste treatment on site : plastic foil and rock mineral wool	2.778	kg

Reference service life

Name	Value	Unit
Reference service life	50	а

End-of-life (C1 - C4)

Name	Value	Unit
Landfilling	105	kg
Transport distance	50	km
Capacity utilization	50	%

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Plastic foil incinerated	0.6744	kg

LCA: Results

DESC	RIPT	ION O	F THE	SYST	EM B	OUND	ARY	′ (X = IN	ICL	UDE	D IN	LCA;	MN	D =	MOD	ULE N	OT DE	CL	ARED)		
												BENEFITS					EFITS AND				
			CONST																LOADS		
PRODUCT STAGE ON PROCESS USE STAGE														OND THE							
			STA	GE															SYSTEM		
			a)								>					_		000			
_		0	Transport from the gate to the site						-	Ħ	Operational energy use	Operational water use		Ę		Waste processing					
ria	ť	iŋ	sit	\sim		Ce		eu		<u> </u>	ne	va	l ∺	C C	ť	SS	_		ν γ φ -		
ate IV	100	tu	fro Je	ldr	a	lan	air	Ē		Ľ	e e			Ei č	ō	e	sa	ų ė	er) tia		
w mater supply	Transport	ac	t t	Assembly	Use	en	Repair	Ce la		OIS	onal use	iona use	st	demolition	Transport	2	Disposal	Reuse-	Recovery- Recycling- potential		
sr Sr	ra	, TC	g A	SS		in i	ď	bla		nır	_ Ei	ati	l p	e Fe	<u>a</u>	0	Dis	r R	of ec		
Raw material supply	F	Manufacturing	ansport from th gate to the site	∢		Maintenance		Replacement		Keturbisnment	e Lo	e	De-construction	ŏ	-	ast			~~~~		
_		2	G G							r	ď	ð		נ		Š					
A1	A2	A3	' А4	A5	B1	B2	B3	B4		35	<u>В</u> 6	B7		C1	C2	C3	C4		D		
X	X	X	X A4	X	MND	MND	MN		_	ND	MND	MND			X	MND	C4 X		X		
																			*		
RESU					VIRON	WENI		MPAC1		m° S	maru	ROOTE	sas	se / s	Inan	IROOT I	nerma	al			
			Param	eter				Unit		A 1	-A3	A4		A	5	C2	C4	L	D		
			oal warmir					[kg CO ₂ -E			5E+2	4.71E+(4.66		3.61E-1	1.69E		-1.34E+0		
			al of the st			layer		kg CFC11-			9E-9	2.16E-1		1.91		1.66E-12	1.86E		-3.41E-10		
	Ac		n potential					[kg SO ₂ -E			3E-1	1.31E-2		1.53		2.30E-3	1.01		-1.81E-3		
Formet	ion notor		rophicatio					[kg (PO ₄) ³ -			3E-2	3.10E-3		1.03		5.77E-4	1.37		-1.92E-4		
Format			pospheric potential				ants	[kg ethene-Eq.] 5.57E-2 -4.05E- [kg Sb-Eq.] 3.23E-5 3.13E-7			1.14		-9.60E-4 2.40E-8	9.71 5.82		-2.20E-4 -1.87E-7					
			on potentia					[MJ]			2.198		-1.92E+1								
RESL							E: 1	m ³ Sma	rtR								2.101		III III		
			Paran	neter				Unit	A	1-A3		A4		A5		C2	C4		D		
	Ren	ewable p	primary en	ergy as e	energy ca	rrier		[MJ]	9.0	00E+1	E+1 -		-			-	-		-		
Re			energy re				n	[MJ]		00E+0					-		-		-		
			newable p					[MJ]		00E+1		3.68E+0		.85E+() 2	2.82E-1	2.58E-	н0	-2.35E+0		
			e primary e					[MJ]		91E+3		-		-		-	-		-		
			orimary en renewable					[MJ] [MJ]		10E+2 02E+3		- 51E+1	 3.77E+1 4.99E+0			- 2.27E-	L1	- -2.23E+1			
	10121 430		enewable of secon			3001003		[kg]		04E+1									0.00E-		0.00E+0
			enewable					[MJ]		-		-					-		-		
	ι		n-renewal			8		[MJ]		-		-		-		-	-		-		
			se of net f									4.63E	-3	-3.66E-3							
								ND WA	STI	E CA	TEG	ORIES									
1m° S	smart	Root	Base /	Smart	Root	l herm	al											<u> </u>			
Parameter					Unit		1-A3		A4		A5		C2	C4		D					
			ardous wa					[kg]		50E-2		.92E-6		2.40E-4		3.77E-7	5.19E		-7.46E-9		
			azardous					[kg]		03E+1		.47E-3		.42E+(4.19E-4 7.13E-6	1.05E-		-6.62E-3		
			oactive w					[kg] [ka]		17E-2 00E+0		.30E-5 00E+0		.22E-3		0.00E+0	3.17E- 0.00E-		-1.26E-3 0.00E+0		
Components for re-use Materials for recycling						[kg]		00E+0		00E+0 00E+0		.00E+0		0.00E+0	0.00E		0.00E+0				
<u> </u>			rials for er					[kg]		00E+0		00E+0		.00E+0		0.00E+0	0.00E+		0.00E+0		
								[MJ]		00E+0		00E+0		.56E+0		0.00E+0	0.00E-		0.00E+0		
Exported electrical energy Exported thermal energy								[MJ]	0.0	00E+0	0.	00E+0	1	.17E+1	1 0).00E+0	0.00E-	+0	0.00E+0		

INTERPRETATION

RESOURCES USE

The primary energy demand from non-renewable resources is dominated by the production of rock mineral wool products (especially due to the energy carrier, coke) and the binder.

The renewable energy demand regarding the product is dominated by the production, mostly due to electricity consumption, and packaging.

ENVIRONMENTAL IMPACT

Every impact category except the abiotic **ADP** elements is dominated by the production. This is due to the consumption of energy (electricity and thermal energy) during the production.

The **Abiotic Depletion Potential elements** (ADPe) are dominated by the supply of raw materials such as cement for briquettes.

The **Global Warming Potential** (GWP) is dominated by the production in the cupola, mostly due to CO_2 emissions from raw materials and energy consumption (50%). The production of the binder represents more than 15% of the impact.

The **Ozone Depletion Potential** (ODP) is most notably influenced by the production and the binder. The **Acidification Potential** (AP) is also dominated by the production due to the emissions related to the processes and the energy consumption. Mostly, the impact refers to emissions to air: 75% from dioxide and 20% from nitrogen oxides.

The **Eutrophication Potential** (EP) is significantly influenced by the production due to emissions from the cupola furnace, curing oven and other unit processes.

The **Potential Ozone Photochemical Oxidants** (POCP) is particularly dominated by the production (emissions in the cupola furnace and other unit processes). The results from the transport are negative due to the NO emissions; NO counteracts the POCP.

References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

www.ibu-epd.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

IBU 2013, PCR, Part A

PCR -Part A: Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. 2013/04

IBU 2014, PCR, Part B

PCR -Part B: Requirements on the EPD for Mineral insulating materials (in German "Anforderungen an die EPD für Mineralische Dämmstoffe"), Version 1.6 Institut Bauen und Umwelt e.V. 07/2014

GaBi 6 2012

GaBi 6: Software and database for life cycle engineering. LBP, University of Stuttgart and PE INTERNATIONAL AG, Leinfelden-Echterdingen, 2012.

GaBi 6 2012B

GaBi 6: Documentation of GaBi6-Datasets for life cycle engineering. LBP University of Stuttgart and PE INTERNATIONAL AG, 2012. http://documentation.gabi-software.com/

SoFi 6 2014

SoFi 6 database for Enterprise Sustainability Performance. PE INTERNATIONAL AG, Leinfelden-Echterdingen, 2014

EN 305

EN 305:2011 Harmonised conditions for the marketing of construction products

EN 13162

EN 13162:2012 Thermal insulation products for buildings - Factory made mineral wool (MW) products - Specification

EN 1602

EN 1602: 2013 Thermal insulating products for building applications - Determination of the apparent density

EN 13501-1

EN 13501-1: 2009 Fire classification of construction products and building elements - Part 1: Classification using test data from reaction to fire tests

ISO 10456

ISO 10456: 2007 Building materials and products -Hygrothermal properties - Tabulated design values and procedures for determining declared and design thermal values

DIN 4102 / T17

DIN 4102 / T17: 1990 Fire behaviour of building materials and elements; determination of melting point of mineral fibre insulating materials; concepts, requirements and testing

DIN EN 1607

DIN EN 1607 : 1996 Thermal insulating products for building applications - Determination of tensile strength perpendicular to faces

DIN EN 826

DIN EN 826 : 2013 Thermal insulating products for building applications - Determination of compression behaviour

DIN EN 12430

DIN EN 12430 : 1998 Thermal insulating products for building applications - Determination of behaviour under point load

Zulassung Z-23.15-1475 /[BF1]

Zulassung Z-23.15-1475 /[BF1] Allgemeine bauaufsichtliche (building inspection approval) issued by the Deutsches Institut für Bautechnik (DIBt), Berlin.

DoPs R4224KPCPR/ R4224LPCPR/ R4238KPCPR/ R4308KPCPR/ R4308LPCPR/ R4309KPCPR/ R4309LPCPR/

Declaration of Performance

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@ibu-epd.com www.ibu-epd.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@ibu-epd.com www.ibu-epd.com
thinkstep	Author of the Life Cycle Assessment Thinkstep Hauptstrasse 111 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+49 (0)7113418170 +49 (0)71134181725 info@thinkstep.com www.thinkstep.com
CHEMICAL ENGINEERING	Université de Liège allée du 6 août B6 4000 Liège Belgium	Tel Fax Mail Web	+32 4 3663547 +32 4 3663547 saicha.gerbinet@ulg.ac.be www.chimapp.ulg.ac.be
KNAUF INSULATION its time to save energy	Owner of the Declaration Knauf Insulation rue de Maestricht 95 4600 Visé Belgium		003210488462 003210488474 Jean- Pigeolet@knaufinsulation.com www.knaufinsulation.com