

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0307 of 27 August 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS

Concrete screw for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-08/0307 issued on 29 April 2014

European Technical Assessment ETA-08/0307

Page 2 of 15 | 27 August 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-08/0307

Page 3 of 15 | 27 August 2015

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS is made of galvanised steel (HUS-A; -H; -I; -P) of sizes 6 and 10 or made of stainless steel (HUS-HR; -CR) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance to tension and shear load, bending moment, edge distance and spacing, minimum thickness of member and displacements	See Annex C

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C

3.3 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

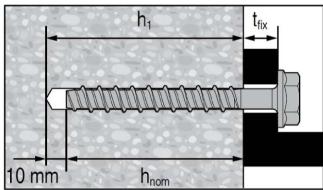
The system to be applied is: 1

European Technical Assessment ETA-08/0307

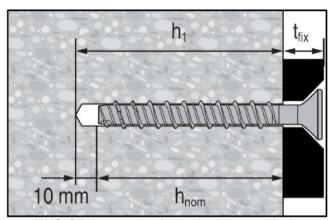
Page 4 of 15 | 27 August 2015

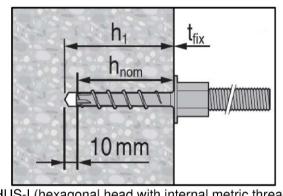
English translation prepared by DIBt

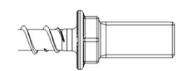
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

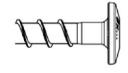
Issued in Berlin on 27 August 2015 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department beglaubigt: Baderschneider


Product and installed condition


HUS-H (hexagonal head, sizes 6 and 10); HUS-HR (hexagonal head, sizes 6, 8, 10 and 14)

HUS-CR (countersunk head, sizes 8 and 10)

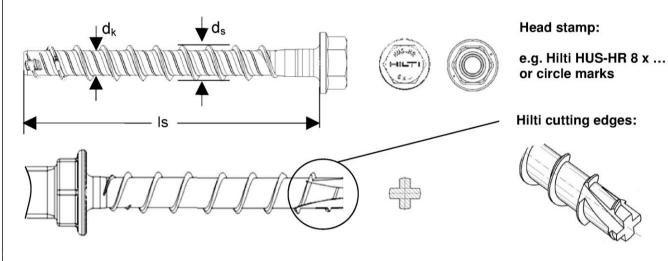

HUS-I (hexagonal head with internal metric thread, size 6)

HUS-A (external thread, size 6)

HUS-H (hexagonal head, size 6)

HUS-P (pan head, size 6)

Hilti screw anchor HUS


Product description Installed condition Example

Annex A1

Table A1: Material and screw types

Part	Designation	f _{yk}	f _{uk}	ds	d _k	As	A ₅	Material
		[N/mm²]	[N/mm ²]	[mm]	[mm]	[mm²]	[%]	
	HUS-A 6			7,85				
	HUS-H 6	745	020		5.05	26,9		
н	HUS-I 6		930		5,85		≤ 8	Carbon Steel, galvanized (≥ 5 μm)
	HUS-P 6		-					Commence Asset V Ass Larger
	HUS-H 10	860	1000	12,3	8,4	55,4		
Screw anchor	HUS-HR 6	900	1050	7,6	5,4	22,9		
	HUS-HR 8	745	870	10,1	7,05	39,0		
	HUS-CR 8	745	870	10,1	7,05	39,0	> 8	Stainless Steel
	HUS-HR 10	915	050	10.0	8.40	EE 4	>0	(A4 grade)
	HUS-CR 10	815	950	12,3	8,40	55,4		
	HUS-HR 14	590	690	16,6	12,6	143,1		

HILTI ...Manufacturer

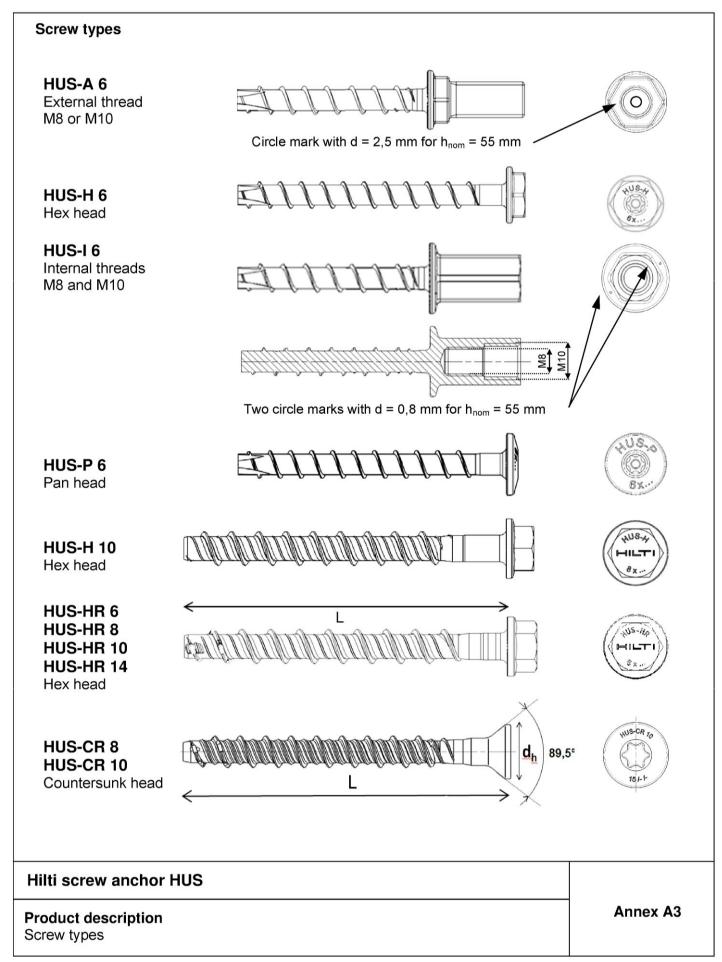
Hilti cutting edges ... Hilti Universal Screw anchor, anchor diameter/ drill bit diameter 6 mm

HUS ... Hilti Universal Screw anchor

e.g. "H" resp. circle marksHead configuration (A, H, I, P, C, R)

R Corrosion Resistance (stainless steel, grade A4)

8Nominal anchor diameter/ drill bit diameter (6...14)
....Nominal anchor length (ls)/ under head length


Hilti screw anchor HUS

Product description

Material and screw types

Annex A2

Specifications of the intended use

Anchorages subject to:

- · Static and quasi-static loads: all sizes and all embedment depths.
- Seismic action for Performance Category C1: sizes 8, 10 and 14 for maximum embedment depth only.
- Fire exposure: sizes 10 and 14 only HUS-H (hex head); Size 6 all head configuration.

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Non-cracked and cracked concrete: all sizes and all embedment depths.

Use conditions (Environmental conditions)

- The anchors may only be used in dry internal conditions: All screw types
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if no particular aggressive conditions exits: screw types made of stainless steel with marking "R"

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic action are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013 (Seismic performance category C1).
 - Anchorages shall be positions outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- · Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D
 - In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- · Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

Hilti screw anchor HUS	
Intended use Specifications	Annex B1

Table B1: Installation parameters

Nominal anchor diameter				6				8	3		1	1	4		
Туре		HUS-	A H I P		HR		R 3 ¹⁾	н		HR CR ¹⁾		HR			
Nominal anchorage depth	h _{nom}	[mm]			55			60	80	70 85		70	90	70	110
Nominal diameter of drill bit	d ₀	[mm]	6				8	3		1	0		1	4	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4				8,4	45		10	,45		14,50		
Clearance hole diameter	d _f	[mm]	9				1	2	14				18		
Wrench size	SW	[mm]	13	13	13	-	13	1	3	15				21	
TORX (H, P and CR typ	es)		-	T30	-	T30	-	T45		T50		50	-		
Diameter of countersunk head (CR)	d _h	[mm]			-		-	-	-	-	-	2	:1	-	-
Installation torque	T_{inst}	[Nm]		2	5		- ¹⁾	- ¹⁾	- ¹⁾	45	55	4	5 ³⁾	65	35
Setting tool			lmp Hilti	act so	rew of 14-A	driver, or 22	e.g. -A ²⁾	lm	pact :	screw	driver	W 22T-A ²⁾			
Depth of drill hole in floor/ wall position	h ₁ ≥	[mm]	h _{nom} +10 mm				h _{nom} +10 h _{nom} +10 mm			,	h _{nom} +10 mm				
Depth of drill hole in ceiling position	h ₁ ≥	[mm]		h _{no}	_m +3 r	nm			m		⊓nom ⁺	io iiiii	'	⊓nom™	io min

3) Installation torque refer to HUS-HR only

Minimum thickness of concrete member, minimum edge distance and spacing Table B2:

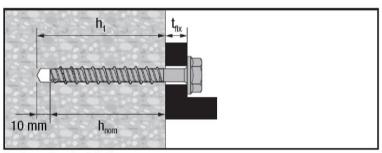
Nominal anchor diameter		6			8		10				14					
Туре			HUS-	A	A H I P HR			R R	н		HR CR		HR			
Nominal anchoraç	ge depth	h _{nom}	[mm]			55			60	80	70	85	70	90	70	110
Minimum r thickness	member	h _{min}	[mm]			100			100	120	110	130	120	140	140	160
Cracked	Minimum edge distance	C _{min}	[mm]		35			45	50	50		50		50	60	
concrete	Minimum spacing	S _{min}	[mm]													
Non- cracked	Minimum edge distance	C _{min}	[mm]		35			45	50	65		50		50	60	
concrete	Minimum spacing	S _{min}	[mm]													

Hilti screw anchor HUS	
Intended use	Annex B2
Installation parameters, Minimum thickness of concrete member, minimum edge distance and spacing	

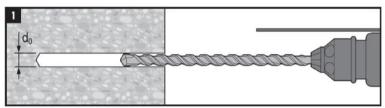
¹⁾ Hand setting in concrete base material not allowed (machine setting only)
2) Hilti recommended electrical impact screw drivers are listed in the instruction for use included in the sales box.

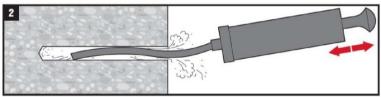
Table B3: Screw length and maximum thickness of fixture for HUS size 6

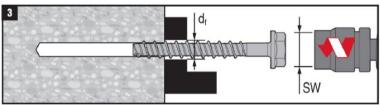
Anchor size			6							
	Α	Н	1	Р	HR					
embedment depth [mm]			h _{nom} 55							
Length of screw	Thickness of fixture [mm]									
[mm]										
55	0		0							
60		5		5	5					
70					15					
80		25		25						
100		45								
120		65								

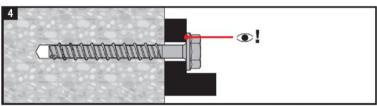

Table B4: Screw length and maximum thickness of fixture for HUS sizes 8, 10, 14

Anchor size	8						14					
type	С	CR		HR		н		HR		CR		R
embedment depth [mm]		h _{nom2} 80	h _{nom1} 60	h _{nom2} 80	h _{nom1} 70	h _{nom2} 85	h _{nom1} 70	h _{nom2} 90	h _{nom1} 70	h _{nom2} 90	h _{nom1} 70	h _{nom2} 110
Length of screw					Thic	kness of	fixture	[mm]				
[mm]	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}
65			5									
75	15		15				5				10	
80												
85			25	5			15		15			
90												
95	35	15	35	15			25	5				
100												
105			45	25			35	15	35	15		
110												
115							45	25				
120											50	10
130												
135											65	25
140							60	40				
150												
160												
200					130	115						
240					170	155						
280					210	195						


Hilti screw anchor HUS	
Intended use Screw length and maximum thickness of fixture	Annex B3


Installation instruction


Anchor after installation


Make a cylindrical hole

Clean the hole

Install the screw anchor by torque wrench or impact screw driver according to Annex B2, Table B1

Ensure that the head of the anchor is fully supported on the fixture and it is not damaged.

Hilti screw anchor HUS	
Intended use Installation instruction	Annex B4

Characteristic values for static and quasi-static action Table C1:

Nominal anchor diame	ter				6		-	3		1	0		14	
Туре			HUS-	4 H –	Р	HR		R R	ŀ	1		R R	Н	R
Nominal anchorage depth		h _{nom}	[mm]		55		60	80	70	85	70	90	70	110
Steel failure for tension a	nd shear	r load												
		$N_{Rk,s}$	[kN]	2	25	24	34,0		55	,4	52	2,6	102	2,2
Characteristic resistance		$\overline{V_{Rk,s}}$	[kN]	12	2,5	17	2	6	23	3,8	3	3	55	77
		k ₂ ²⁾	[-]	0	,8	1,0	1	,0	0,	,8	1	,0	1,	0
	M ⁰ _{Rk,s}	[Nm]	2	1	19	3	6	7	0	6	6	19	3	
Pull-out failure														
Characteristic resistance ir concrete C20/25	cracked	$N_{Rk,p}$	[kN]	(6	5	6	12	7,5	16	9	16	12	25
Characteristic resistance ir cracked concrete C20/25	non-	$N_{Rk,p}$	[kN]	9	7,5	9	12	16	12	20	16	25	- 1)	- 1)
Increasing factors for N _{Rk,p}			C30/37		1,22	2	1,22		1,17		1,22		1,22	
in cracked and non-cracke	d	Ψc	C40/50		1,41	I	1,41		1,32	1,41		1,41		
concrete			C50/60	1,55		1,55		1,42		1,55		1,55		
Concrete cone and splitti	ng failur	е												
Effective anchorage depth		h _{ef}	[mm]	4	2	45	47	64	54	67	54	71	52	86
Cracke Factor for	d	k _{cr} ²⁾	[-]						7,2					
Non-cr	acked	k _{ucr} ²⁾	[-]						10,1					
Concrete cone Edge d	istance	C _{cr,N}	[mm]		1,5 h	ef	1,5	h _{ef}		1,5	h _{ef}		1,5	h _{ef}
failure Spacin	g	S _{cr,N}	[mm]		3 h∈	f	3	h _{ef}		3	h _{ef}		3 1	1 _{ef}
Edge d	istance	C _{cr,sp}	[mm]		1,5 h	lef	1,5	h _{ef}	1,5	h _{ef}	1,8	h _{ef}	1,8	h _{ef}
Spacin	g	S _{cr,sp}	[mm]		3 h∈	f	3	h _{ef}	3	h _{ef}	3,6	h _{ef}	3,6	h _{ef}
Installation safety factor		$\gamma_2^{(3)} = \gamma_{inst}$	2)	1	,2	1,4	1	,2	1,2	1,4	1	,2	1,	2
Concrete pry-out failure														
k factor $k^{3)} =$		$k^{3)} = k_3^{2)}$	[mm]	1,5			2		2				2	
Concrete edge failure														
Effective length of anchor		l _f	[mm]	4	2	45	47	64	54	67	54	71	52	86
Effective diameter of ancho	or	d	[mm]		6		8	3		1	0		1-	4

Hilti screw anchor HUS	
Performances Characteristic values for static and quasi-static action	Annex C1

¹⁾ Pull-out is not decisive
2) Parameter relevant only for design according to CEN/TS 1992-4: 2009.
3) Parameter relevant only for design according to ETAG 001 Annex C.

Table C2: Characteristic values for seismic category C1

Nominal anchor diameter				8	1	0	14																
Туре		HUS- HR H HR CR					HR																
Nominal a	anchorage	h _{nom}	[mm]	80	85 90		85 90		85 90		85 90		85 90		85 90		85 90		85 90		85 90		110
Steel failu	re																						
Characteris	stic resistance	$N_{\text{Rk,s,seis}}$	[kN]	34,0	55,4	52,6	102,2																
Characteris	stic resistance	$V_{Rk,s,seis}$	[kN]	11,1	17	7,9	53,9																
Pull-out fa	ilure																						
Characteris cracked co	stic resistance in ncrete	$N_{Rk,p,seis}$	[kN]	7,7	12,5		17,5																
Concrete	cone failure																						
Effective e	mbedment depth			64	67	71	86																
Concrete	Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}																			
cone failure	Spacing	S _{cr,N}	[mm]	3,0 h _{ef}																			
Installation	safety factor	γ2	[-]	1,2	1,4 1,2		1,2																
Concrete	ory-out failure																						
k factor		[-]	2,0																				
Concrete e	edge failure																						
Effective le	ngth of anchor	l _f	[mm]	64	67	86																	
Effective di	ameter of anchor	d	[mm]	8	1	0	14																

Hilti screw anchor HUS	
Performances Characteristic values for seismic category C1	Annex C2

Table C3: Characteristic values for resistance to fire

Nominal ancho			6	8			1	14						
diameter								.,						
Туре			HUS-	AHIP	HR	HR		н		HR		HR		
Nominal anchorage depth		h _{nom}	[mm]	5	55	60 80		70	85	70	90	70	110	
Steel Failure for t	tension and sh	ear load	(F _{R,k,s,fi} =	$N_{R,k,s,f}$	$_{i} = V_{R,k,s}$	_{s,fi})								
	R30	F _{Rk,s,fi}	[kN]	1,6	4,9	9	,3	5,	0	18	3,5	41	1,7	
	R60	$F_{Rk,s,fi}$	[kN]	1,2	3,3	6	,3	3,	6	12	2,0	26	6,9	
	R90	$F_{Rk,s,fi}$	[kN]	0,8	1,8	3	,2	2	2	5	,4	12,2		
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	0,7	1,0	1	1,7		1,5		,4	4 5,4		
resistance	R30	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	1,4	4,0	8,2		6,3		19,4		65,6		
	R60	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	1,1	2,7	5,5		4,6		12,6		42,4		
	R90	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	0,7	1,4	2,8		2,8		5,7		19,2		
	R120	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	0,6	0,8	1,5		1,9		2,5		8,5		
Concrete pull-ou	t failure													
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	1,3	1,5	3,0	1,9	4,0	2,3	4,0	3,0	6,3	
	R120	$N_{Rk,p,fi}$	[kN]	1,2	1,0	1,2	2,4	1,5	3,2	1,8	3,2	2,4	5,0	
Edge distance														
R30 to R120 c _{cr,N} [mm]					2 h _{ef}									
Anchor spacing														
R30 to R120 s _{cr,N} [mm] 4 h _{ef}														
Concrete pry-out	failure													
	R30 to R120	k	[-]	1	,5	:	2			2		:	 2	

Hilti screw anchor HUS	
Performances Characteristic values for resistance to fire	Annex C3

Table C4: Displacement under tension load

Nominal anch	6			8			1	14						
Туре			HUS-	4 H –	H P HR		HR CR		н		HR CR		HR	
Nominal anchorage depth		h _{nom}	[mm]	55			60 80		70	85	70	90	70	110
	Tension load	N	[kN]	2	2,4		2,4	4,8	3,0	4,1	3,6	6,3	4,8	9,9
Cracked concrete	Displacement	δ_{N0}	[mm]	0	,1	0,4	0,5	0,7	0,2	0,3	0,3	0,6	0,9	1,4
C20/25 to C50/60		δ_{N_∞}	[mm]	0	0,6		0,7	1,1	0,3	0,7	0,6	1,1	1,1	1,4
		$\delta_{\text{N,seis}}$	[mm]		-		-	1,2	-	1,2	-	1,2	-	0,4
Non-cracked	Tension load	N	[kN]	3,6	3,0	3,1	4,8	6,3	4,8	6,8	6,3	9,9	7,5	16,0
concrete C20/25 to C50/60		δ_{N0}	[mm]	0	,2	0,8	0,7	1,6	0,2	0,3	0,3	1,3	0,7	1,0
	Displacement	$\delta_{N\infty}$	[mm]	0	,3	0,8	0,7	1,6	0,3	0,7	0,3	1,3	0,7	1,0

Table C5: Displacement under shear load

Nominal anchor diameter			6			8				10				14		
Туре			HUS-	A H P HR I		н		HR CR		н		HR CR		HR		
Nominal anchorage depth		h _{nom}	[mm]	55			60	75	60	80	70	85	70	90	70	110
	Shear load	V	[kN]	6,0		7,8	6,9	6,9	11,0	12,4	10,3	10,3	13,6	15,7	12,9	27,3
Cracked and Non- cracked concrete		δ_{V0}	[mm]	1	,9	0,4	1,5	1,5	2,0	2,3	1,5	1,5	1,1	1,7	3,5	3,9
C20/25 to C50/60	Displacement	$\delta_{V\infty}$	[mm]	2	2,8		2,3	2,3	2,4	2,9	2,3	2,3	1,5	2,4	3,9	4,3
	,	$\delta_{\text{V,seis}}$	[mm]		-	-	-	4,8	-	4,8	-	5,3	-	5,3	-	7,6

Hilti screw anchor HUS	
Performances Displacements	Annex C4